
CS 170, Spring 2024 Handout: FFT in the Wild P. Raghavendra and C. Borgs

CS 170 Handout: FFT in the Wild

By Jackie Lian, Jonathan Pei, Lance Mathias

Contents

1 Introduction 2

2 Variations of k-SUM 3
2.1 Example Problem 1: Triple Sum . 3
2.2 Example Problem 2: Ways to Get Cups . 5

3 Convolution 7
3.1 Example Problem: LegoLand . 7

4 Cross Correlation 10
4.1 Example Problem (String Matching) . 11

5 Other helpful resources 13

1

CS 170, Spring 2024 Handout: FFT in the Wild P. Raghavendra and C. Borgs

1 Introduction

In lecture, you learned about using FFT as a subroutine to speedup polynomial multiplication
from O(n2) to O(n log n) time1. Using polynomial multiplication (via FFT) as a black-box,
we can do a lot of other cool stuff!

In this class, the procedure for FFT applications generally follows the outline below:

1. Construct two polynomials p, q whose product r gives useful information for solving the
problem. Depending on the problem, the construction is performed by encoding infor-
mation from the problem into either the coefficients or exponents of both polynomials.

2. Compute r(x) = (p · q)(x) via FFT (as a black-box).

3. Use the coefficients and/or exponents of r to solve the problem.

Then, full proofs of correctness involve arguing why the product polynomial r gives us useful
information for solving the problem, and usually involve some manipulation of mathematical
sums.

In this class, we apply FFT to solve the following types of problems:

• Variations of k-SUM (2)

Example problems: triple sum (dis03), ways to get cups, adding coins (sp19 mt1 q12).

• Convolutions (3)

Example problems: legoland (sp23 mt1 q9).

• Cross correlation / Shifted Dot Product (4)

Example problems: string matching (dis03), counting k-inversions (hw03), ice-cream
loving PNPenguins (hw03).

We will now walk through each application type.

1n is the max degree between the two polynomials being multiplied.

2

CS 170, Spring 2024 Handout: FFT in the Wild P. Raghavendra and C. Borgs

2 Variations of k-SUM

Main Idea: All problems of this type involve computing the number of ways to achieve
some sum s, given a collection of elements with potential capacity constraints.

Common Strategy: Construct polynomial(s) by encoding the elements the exponents.
Then, use FFT to multiply the polynomials to yield a product polynomial whose terms axb

encode the following information: a is the number of ways to combine elements to achieve
sum b.

2.1 Example Problem 1: Triple Sum

We are given an array A[0, . . . , n− 1] with n integers in the range [0, n− 1] (not necessarily
all distinct!), and a non-negative integer s. We would like to know if there exist indices
0 ≤ i, j, k ≤ n− 1 (not necessarily distinct) such that

A[i] +A[j] +A[k] = s

(a) First, let us consider 2SUM, a simplified version of triple sum where you determine if
there exist indices 0 ≤ i, j ≤ n− 1 (not necessarily distinct) such that

A[i] +A[j] = s

Suppose we’re given the array [1, 3, 5] and n = 5. What are all the possible 2SUMs?

Solution: We compute all possible 2SUMs below:

1 + 1 = 2

1 + 3 = 4

3 + 1 = 4

3 + 3 = 6

1 + 5 = 6

5 + 1 = 6

3 + 5 = 8

5 + 3 = 8

5 + 5 = 10

(b) Now try encoding the above array into a polynomial to solve 2SUM with one polynomial
multiplication. Then, how would you encode an arbitrary array to solve 2SUM?

Hint: given p(x) = x1+x3+x5, compute p(x)2. What are the resulting coefficients and
exponents in the product? Can they be used to solve 2SUM?

Solution: Using the hint, we have

p(x)2 = (x1 + x3 + x5)(x1 + x3 + x5) = x2 + 2x4 + 3x6 + 2x8 + x10

3

CS 170, Spring 2024 Handout: FFT in the Wild P. Raghavendra and C. Borgs

Comparing our resulting polynomial p(x)2 to the 2SUMs computed in part (a), we
see that {2, 4, 6, 8, 10} show up as exponents, and the coefficient corresponding to each
exponent is exactly the number of ways to achieve that 2SUM!

Thus, to solve 2SUM, we can follow this procedure:

(i) Encode the array A into a polynomial by setting all its elements as exponents:

p(x) = xA[0] + xA[1] + · · ·+ xA[n−1] =
n−1∑
i=0

xA[i].

(ii) Use FFT to multiply p(x) with itself to yield:

p(x)2 =

(
n−1∑
i=0

xA[i]

)(
n−1∑
i=0

xA[i]

)

=
n−1∑
i=0

n−1∑
j=0

xA[i]xA[j]

=
∑

0≤i,j≤n−1

xA[i]+A[j]

(iii) Finally, to check whether or not s exists as a 2SUM for A, we simply need to check
whether the term with xs has a non-zero coefficient.

(c) Now, design an O(n log n) time algorithm for triple sum. Note that you do not need to
actually return the indices; just yes or no is enough.

Food for thought: is it possible to return the number of ways you can add 3 elements
from A to equal n?

Solution: Key: exponentiation converts multiplication to addition!

Main idea.

Using similar idea to 2SUM, we define

p(x) = xA[0] + xA[1] + · · ·+ xA[n−1].

Notice that p(x)3 contains a sum of terms, where each term has the form

xA[i] · xA[j] · xA[k] = xA[i]+A[j]+A[k].

Therefore, we just need to check whether p(x)3 contains xs as a term.

Proof of Correctness. Observe that

q(x) = p(x)3 =

 ∑
0≤i<n

xA[i]

3

=

 ∑
0≤i<n

xA[i]

 ·

 ∑
0≤j<n

xA[j]

 ·

 ∑
0≤k<n

xA[k]


=

∑
0≤i,j,k<n

xA[i]xA[j]xA[k] =
∑

0≤i,j,k<n

xA[i]+A[j]+A[k].

4

CS 170, Spring 2024 Handout: FFT in the Wild P. Raghavendra and C. Borgs

Therefore, the coefficient of xs in q is nonzero if and only if there exist indices i, j, k
such that A[i] +A[j] +A[k] = s. Hence, the algorithm is correct.

Also, building off of what we explored in part (b), the coefficient of xs also tells us
exactly how many such triples (i, j, k) satisfy A[i] +A[j] +A[k] = s.

Runtime Analysis. Constructing p(x) clearly takes O(n) time. p(x) is a polynomial
of degree at most n = O(n). Therefore doing the two multiplications to compute
q(x) takes O(n log n) time with the FFT. Finally, looking up the coefficient of xs takes
constant time, so overall the algorithm takes O(n log n) time.

2.2 Example Problem 2: Ways to Get Cups

You want to buy a total of s cups. The store sells cups in packages of integer size c1, c2, c3,
and c4, all in the range [1, s]. The store, due to demand on cups, also places a restriction
that you can only buy p of each package. Describe an efficient algorithm that allows you to
compute the number of ways you can purchase exactly s cups, and analyze its runtime.

Solution:

Intuition. At a glance, this problem may seem to be quite different from Triple Sum—in
Triple Sum you add together a fixed 3 elements from the array, while here the number of
packages you can buy in each size can be varied. However, the end goal is still the same: you
have a bunch of elements and want to figure out how to combine those elements to achieve
some sum.

In this problem, to account for the varied number of cups you can use in each size, you can
reframe the problem as follows:

You are given four different integer arrays, each array containing all the possible
number of cups that can be bought using a given package size, i.e.

A1 = [0, c1, 2c1, . . . , pc1]

A2 = [0, c2, 2c2, . . . , pc2]

A3 = [0, c3, 2c3, . . . , pc2]

A4 = [0, c4, 2c4, . . . , pc4]

Determine the number ways you can choose indices 0 ≤ i, j, k, ℓ ≤ n−1 such that

A1[i] +A2[j] +A3[k] +A4[ℓ] = s.

Try to convince yourself that this is a valid way of rephrasing the problem. When framed in
this way, it is easy to see that the problem is actually 4SUM in disguise!

5

CS 170, Spring 2024 Handout: FFT in the Wild P. Raghavendra and C. Borgs

Main Idea: We construct 4 different polynomials as follows:

f1(x) =

p∑
i=0

xi·c1 = x0 + xc1 + x2c1 + · · ·+ xpc1

f2(x) =

p∑
i=0

xi·c2 = x0 + xc2 + x2c2 + · · ·+ xpc2

f3(x) =

p∑
i=0

xi·c3 = x0 + xc3 + x2c3 + · · ·+ xpc3

f4(x) =

p∑
i=0

xi·c1 = x0 + xc4 + x2c4 + · · ·+ xpc4

where the exponent in polynomial fα represents the possible number of cups you can buy
with a package of size cα. Now, we can run the FFT polynomial multiplication algorithm 3
times to obtain the final polynomial q(x):

f12(x) = (f1 · f2)(x)
f34(x) = (f3 · f4)(x)

q(x) = f1234(x) = (f12 · f34)(x)

Note: it’s completely valid to multiply them in a different order like (f1, f2), (f12, f3), (f123, f4);
the asymptotic runtime ends up being the same anyways.

Now, to get the number of ways to purchase exactly s cups, we simply retrieve the coefficient
of the term with xs in q(x)!

Proof of Correctness: We compute q as follows:

q(x) = (f1 · f2 · f3 · f4)(x) =

(
p∑

i=0

xi·c1

)(
p∑

i=0

xi·c2

)(
p∑

i=0

xi·c3

)(
p∑

i=0

xi·c4

)
=

∑
0≤i,j,k,ℓ≤p

xi·c1xj·c2xk·c3xℓ·c4 =
∑

0≤i,j,k,ℓ≤p

xi·c1+j·c2+k·c3+ℓ·c4

Hence, the coefficient for a given term with xs gives the number of ways to purchase exactly
s cups, using up to p of each package type.

Runtime Analysis: Constructing polynomials takes 4 ·O(p) = O(p) time, and their degrees
are at most p ·max(c1, c2, c3, c4) = ps. Hence, performing three multiplications via FFT to
compute q(x) takes O(ps log(ps)) time (why is this?). Finally, looking up the coefficient of
xs takes constant time, so the overall runtime of the algorithm is O(ps log(ps)).

6

CS 170, Spring 2024 Handout: FFT in the Wild P. Raghavendra and C. Borgs

3 Convolution

Main Idea:

Note that the polynomial multiplication operation, at its core, is a convolution. To see why
this is, consider multiplying two polynomials p(x) =

∑m
i=0 aix

i and q(x) =
∑n

j=0 bjx
j :

r(x) = (p · q)(x)

=

(
m∑
i=0

aix
i

) n∑
j=0

bjx
j


=

m∑
i=0

n∑
j=0

aibjx
ixj

=

m∑
i=0

n∑
j=0

aibk−ix
k [k = i+ j]

=
m+n∑
k=0

(
k∑

i=0

aibk−i

)
xk

Notice that the inside of the parentheses is the discrete convolution of the coefficients of p, q.

Hence, whenever you see a problem where you need to compute some form of

k∑
i=0

aibk−i,

you should immediately think of polynomial multiplication (via FFT)!

Common Strategy:

Construct two polynomials by filling in their coefficients with some useful information from
the problem. When doing this, you want to think about what things you want to multiply
and then sum together; or alternatively, think about what a and b should represent in the
summation

∑k
i=0 aibk−i.

3.1 Example Problem: LegoLand

Legoland is open for 2n days in the summer, and visitors arrive at the park for the first n
days. On day i, exactly ai visitors are arrive at Legoland.

Visitors stay in Legoland for different lengths of time. More precisely, among visitors arriving
on any given day, a pt-fraction of visitors will leave after t-days at Legoland (i.e. they will
spend t days at Legoland then leave the next day).

More formally, we are given the following input:

1. Number of arrivals {a1, a2, ... an}.

2. {p1, p2, . . . ,pn} where pt is the fraction of visitors that will spend t days.

7

https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Signals_and_Systems_(Baraniuk_et_al.)/04%3A_Time_Domain_Analysis_of_Discrete_Time_Systems/4.03%3A_Discrete_Time_Convolution

CS 170, Spring 2024 Handout: FFT in the Wild P. Raghavendra and C. Borgs

We want to design an algorithm to find the number of visitors leaving the park on each day.

Solution: Intuition: We believe that one of the best ways to approach this type of (opaque)
problem is to start with some small examples and look for patterns. Even if you’re able to
recognize that the problem is probably an FFT application problem, don’t jump straight into
constructing polynomials because it’s easy to lose focus along the way.

Thus, for this question where you’re pretty sure you need to compute a series of shifted sums,
but aren’t sure exactly what you’re supposed to sum up, we highly recommend thinking about
what happens on day 1, day 2, etc.; start small and build up some ideas. Let’s go through a
little bit together:

How many people are leaving on day 1? Well, no one is leaving on day 1
since everyone has to stay for at least one day (the pi’s start at p1), and everyone
there just arrived on that same day.

How many people are leaving on day 2? On day 2, people who arrived on
day 1 and only stay for 1 day will leave. Thus, the number of people leaving on
day 2 is a1p1.

How many people are leaving on day 3? On day 3, people who arrived on
day 1 and stay for 2 days will leave, and people who arrived on day 2 and stay
for 1 day will also leave. Considering leaving visitors from both days 1 and 2, the
total number of people leaving on day 3 is a1p2 + a2p1.

How many people are leaving on day 4? Using the same logic as in previous,
we can determine that the number of people leaving on day 4 is a1p3+a2p2+a3p1.

Do we see a pattern here? If you keep on observing subsequent days, you’ll be able to deduce
that the number of people leaving on a given day d is∑

1≤i<d

ai · pd−i,

where we define ai, pi to be zero whenever i > n. This sum looks just like the polynomial
coefficient term we saw previously!

Now that we’ve spotted the pattern, we are ready to dive into the construction of the poly-
nomials.

Main Idea: We construct 2 polynomials as follows:

A(x) =
n∑

i=1

aix
i

P (x) =

n∑
j=1

pjx
j

Then, we use FFT to multiply the two polynomials to yield

L(x) = (A · P)(x) =

2n∑
d=2

cdx
d,

8

CS 170, Spring 2024 Handout: FFT in the Wild P. Raghavendra and C. Borgs

where cd represents the number of visitors leaving the park on day d! Thus, for our final
answer we just return

[0, c2, c3, . . . , c2n].

Proof of Correctness: Observe that

L(x) = (A · P)(x) (1)

=

(
n∑

i=1

aix
i

) n∑
j=1

pjx
j

 (2)

=

2n∑
d=2

 ∑
i+j=d

aipj

xd (3)

=

2n∑
d=2

(∑
1≤i<d

ai · pd−i︸ ︷︷ ︸
cd

)
xd (4)

Hence, the coefficients correctly represent the number of visitors leaving on each day.

Runtime Analysis: Constructing both polynomials takes 2 · O(n) = O(n) time, and both
polynomials have degree n. Thus, multiplying them via FFT takes O(n log n) time. Finally,
return all the coefficients takes O(1) or O(n) time, depending on how we implement array
pointers. Thus, the overall runtime is O(n log n).

9

CS 170, Spring 2024 Handout: FFT in the Wild P. Raghavendra and C. Borgs

4 Cross Correlation

Main Idea:

Cross correlation is often referred to as a “sliding dot product” operation on two vectors a
and b, which is an apt description: each coefficient in the output is of the form

∑k
i=0 aibj+i,

where k is the length of one of a, b. In Figure 1 below, we visualize computing the cross
correlation of a = [a0, a1, a2] and b = [b0, . . . , b7]:

b0 b1 b2 b3 b4 b5 b6 b7

a0 a1 a2 Shift 0: a0b0 + a1b1 + a2b2 =
∑2

i=0 ai · bi+0

...

a0 a1 a2 Shift 1: a0b1 + a1b2 + a2b3 =
∑2

i=0 ai · bi+1

a0 a1 a2 Shift 2: a0b2 + a1b3 + a2b4 =
∑2

i=0 ai · bi+2

↓

2∑
i=0

ai · bi+0

2∑
i=0

ai · bi+1

2∑
i=0

ai · bi+2

Cross correlation values

Figure 1: Visual representation of Cross Correlation (“sliding dot product”)

To actually implement this type of operation, the key idea is to apply our intuition from
convolution but reverse one of the polynomials so that instead of having coefficients of the
form

∑k
i=0 ai · bk−i, we will have something of the form

∑k
i=0 ai · bk′+i. In other words, we

can compute the cross correlation of two vectors a, b as follows:

1. Reverse b to yield bR.

2. Generate the polynomials A and BR from a and bR, respectively, by treating them as
coefficient vectors.

3. Use FFT to compute the product polynomial C(x) =
(
A ·BR

)
(x).

4. The coefficients of C are the cross-correlation of a and b!

We provide a proof of correctness for this method as follows:

Let us explicitly write out the polynomials A and BR:

A(x) = a0 + a1x
1 + · · ·+ amxm

BR(x) = bn + bn−1x
1 + · · ·+ b0x

n

10

CS 170, Spring 2024 Handout: FFT in the Wild P. Raghavendra and C. Borgs

Applying the formula derived in (3), the coefficient of xk in the product polynomial
A ·BR is then:

k∑
j=0

aj · bn−(k−j) =
k∑

j=0

aj · b(n−k)+j ,

Notice that this is a cross-correlation between a and b at a shift of n− k! Thus,
we have shown that the k-th term of the convolution between a and bR is the
(n− k)-th term of the cross-correlation between a and b.

We usually employ this technique when we want some kind of sliding window that computes
a dot product at each possible starting location. Typical examples for this are matching
problems where we want to measure the similarity (using a dot product) between one array
and another at multiple different offsets or shifts, or in problems where we want to aggregate
quantities over a sliding window.

Common Strategy:

Similar to the common strategy for convolution, you want to think about what a and b
should represent in the summation

∑k
i=1 aibk′+i. For instance, if the problem deals with

finding matchings between bit strings, it may be helpful to construct “helpful” coefficients
by mapping 0 → −1 and 1 → 1 such that the dot product can be used to properly measure
similarity.

It’s also useful to write out the resulting coefficients of your polynomial multiplication to
double-check that you’ve set up your polynomials correctly.

4.1 Example Problem (String Matching)

Suppose we have a bitstring s of length n + 1, and a pattern p (also a bitstring) of length
m + 1 < n. How do we efficiently find the (contiguous) substring of s which matches the
pattern p at the largest number of positions?

Solution:

Intuition: First, we’ll represent s and p in such a way that we can use a dot product to
measure similarity between substrings.

Then, the question is essentially asking us to compute the cross-correlation of our represen-
tations of p and s, then find the index where the cross-correlation is highest. Since we want
to perform sliding dot products over different slices of s, we’ll represent p using our first
polynomial and s with our second polynomial.

Main Idea: First, let’s map the bits of s and p to numbers using the following function Φ:

Φ(x) =

{
−1 : x = 0

1 : x = 1

11

CS 170, Spring 2024 Handout: FFT in the Wild P. Raghavendra and C. Borgs

This way, Φ(pi) ·Φ(sj) = 1 if pi = sj and is −1 otherwise, so larger dot products correspond
with larger degrees of similarity. Now, the problem reduces to finding the index which
maximizes the dot product of the resulting substrings, or in other words, finding the index
that maximizes their cross-correlation.

Rather than just using cross-correlation as a black box, we’ll approach this problem using
only properties of FFT and polynomial multiplication. First, let’s define polynomials to
represent our arrays:

1. P (x) = Φ(p0) + Φ(p1)x
1 +Φ(p2)x

2 + · · ·+Φ(pm)xm

2. S(x) = Φ(sn) + Φ(sn−1)x
1 +Φ(sn−2)x

2 + · · ·+Φ(s0)x
n

Notice that the coefficients of S are the entries of s in reverse order. Next, multiply those
two polynomials using FFT. Finally, find the index k of the term with the largest leading
coefficient, and return (n− k).

Proof of Correctness: Let R(x) = S(x) · P (x). Suppose the term xk in R(x) has the
largest leading coefficient ck for some value of k, which can be expressed as.

ck =
k∑

i=0

Φ(pi) · Φ(sn−(k−i)) =
k∑

i=0

Φ(pi) · Φ(s(n−k)+i)

Which is exactly the dot product between the representations of the pattern p and the
subarray of s starting at index n− k.

Runtime Analysis: Constructing the polynomials and padding them to the appropriate
length takes O(n+m) time. We then use FFT to multiply the two polynomials which have
length O(n) and O(m) respectively. Thus the FFT and inverse FFT will take O(n log n) since
to perform FFT polynomial multiplication, we need to pad both polynomials to have length
O(n +m) = O(n) (The n term dominates since n > m). The final searching process takes
O(m+ n). Thus the final overall runtime will be O(n log n) +O(m+ n) = O(n log n).

12

CS 170, Spring 2024 Handout: FFT in the Wild P. Raghavendra and C. Borgs

5 Other helpful resources

Beyond the concepts, strategies, and examples we’ve included in this handout, we highly
encourage you to review the following resources to bolster your understanding:

• Prof. Wright’s lecture slides on FFT and applications: https://drive.google.com/

file/d/1g4mWiDi-YrAuf-RZPby33ORn4-64amtj/view?usp=sharing.

• Awesome FFT Youtube Video by Reducible: https://www.youtube.com/watch?v=

h7apO7q16V0.

13

https://drive.google.com/file/d/1g4mWiDi-YrAuf-RZPby33ORn4-64amtj/view?usp=sharing
https://drive.google.com/file/d/1g4mWiDi-YrAuf-RZPby33ORn4-64amtj/view?usp=sharing
https://www.youtube.com/watch?v=h7apO7q16V0
https://www.youtube.com/watch?v=h7apO7q16V0

	Introduction
	Variations of k-SUM
	Example Problem 1: Triple Sum
	Example Problem 2: Ways to Get Cups

	Convolution
	Example Problem: LegoLand

	Cross Correlation
	Example Problem (String Matching)

	Other helpful resources

