LECTURE #13

CS 170
Spring 2021
Last time:
More examples of problems solved via dynamic programming (DP):
- Knapsack with repetition
- Chain matrix multiplication
- All-pairs shortest paths
- Traveling Salesperson problem

Please practice DP problems on your own.

Today:
Linear programming: expressing and solving linear optimization problems.

Note: dynamic programming ≠ linear programming
[recursion + memoization] [high-dim optimization problem]
• An optimization problem has the following form:
 - \(n \) variables \(x_1, \ldots, x_n \in \mathbb{R} \)
 - objective function \(f(x_1, \ldots, x_n) \in \mathbb{R} \)
 - \(m \) constraints \(c_1, \ldots, c_m \) \(c_i(x_1, \ldots, x_n) \in \{ \text{true}, \text{false} \} \)

The goal is:

\[
\begin{align*}
\max & \quad f(x_1, \ldots, x_n) \\
\text{s.t.} & \quad \forall i \in [m] \quad c_i(x_1, \ldots, x_n) = \text{true}
\end{align*}
\]

• A Linear Programming problem is s.t.
 1. \(f \) is a \text{linear function} \(f(x_1, \ldots, x_n) = a_1x_1 + \ldots + a_nx_n \) for \(a_1, \ldots, a_n \in \mathbb{R} \)
 2. each \(c_i \) is a \text{linear constraint} (inequality or equality)

\[
\begin{align*}
\text{e.g.} & \quad c_1(x_1, x_2, x_3, x_4) \quad 5x_1 + x_2 & \le 0 \\
& \quad c_2(x_1, x_2, x_3, x_4) \quad x_1 & > 0 \\
& \quad c_3(x_1, x_2, x_3, x_4) \quad x_3 + 2x_4 & = 1 \quad (\iff x_3 + 2x_4 \ge 1, \ x_3 + 2x_4 \le 1)
\end{align*}
\]

Note: "strict" inequalities such as \(x_2 < 3 \) are NOT allowed

[else it could be that there is no optimal solution even when the set of all solutions is bounded, because the set of possible solutions would not be topologically closed]
Example:

![Example: chestnuts & pretzels]

The goal is to maximize profit.

We map the problem to an LP instance:

- variables: \(x_1 = \# \text{ chestnut boxes} \), \(x_2 = \# \text{ pretzels} \) (\(n=2 \))
- objective function: \(f(x_1, x_2) = 2x_1 + 4x_2 \)
- constraints: \(x_1 \geq 0 \), \(x_2 \geq 0 \) (\(m=5 \))
 \[x_1 + x_2 \leq 100 \]
 \[x_1 \leq 50 \]
 \[x_2 \leq 80 \]

How to solve? Draw it!

<table>
<thead>
<tr>
<th></th>
<th>profit</th>
<th>max daily demand</th>
<th>total space in cart</th>
</tr>
</thead>
<tbody>
<tr>
<td>chestnut box</td>
<td>2</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>pretzel</td>
<td>4</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

\((x_1, x_2) = (20, 80) \)
\[f(20, 80) = 2 \times 20 + 4 \times 80 = 40 + 320 = 360 \]
Geometric Observations

- Inequality \Rightarrow half-space
- Feasible solutions \Rightarrow intersection of all half-spaces
- Objective function \Rightarrow direction
- Optimal solution \Rightarrow follow direction in feasible solutions until no longer possible

The set of feasible solutions can also be empty or unbounded.
CONVEXITY

Claim: set of feasible solutions to a LP is convex:

- if \(\vec{x} \) and \(\vec{y} \) are feasible then \(\lambda \in [0,1] \) so is \(\vec{z} := \lambda \vec{x} + (1-\lambda) \vec{y} \)

Ex: if \(x_1, x_2 \geq 0 \) & \(y_1, y_2 \geq 0 \) then \(\lambda \in [0,1] \)

\[
\begin{align*}
\lambda x_1 + (1-\lambda)y_1 &\geq 0, \\
\lambda x_2 + (1-\lambda)y_2 &\geq 0
\end{align*}
\]

\[
\begin{align*}
\lambda (x_1 + y_1) &\geq 0, \\
\lambda (x_2 + y_2) &\geq 0
\end{align*}
\]

\[
\begin{align*}
\lambda (x_1 + x_2) + (1-\lambda)(y_1 + y_2) &\leq \lambda \cdot 100 + (1-\lambda) \cdot 100 = 100
\end{align*}
\]

Proof of Claim: Follows from linearity of constraints.

\[
\begin{align*}
\vec{a}^T \vec{x} &\leq b \\
\vec{a}^T \vec{y} &\leq b
\end{align*}
\]

\[
\lambda \in [0,1]
\]

\[
\begin{align*}
\vec{a}^T (\lambda \vec{x} + (1-\lambda) \vec{y}) &= \lambda \vec{a}^T \vec{x} + (1-\lambda) \vec{a}^T \vec{y} \leq \lambda b + (1-\lambda) b = b
\end{align*}
\]

Hence one of the following holds:

- **(1) no feasible solutions** (e.g. \(x_1 \geq 1 \), \(x_1 \leq -3 \))
- **(2) no optimum in unbounded space** (e.g. \(\max x_1 + x_2 \) s.t. \(x_1, x_2 \geq 0 \))
- **(3) optimum is a vertex of the polytope**
- **(4) if in the interior then can improve**
- **(5) if on an edge then can move along edge**

[either improves or the same]
Solving Linear Programs

Dantzig 1947: simplex method

\[
\begin{align*}
 &1. \text{Start at any vertex of the polytope} \\
 &2. \text{Move to any adjacent vertex with a better value} \\
 &3. \text{If there is no such vertex, output the current vertex}
\end{align*}
\]

For the max-profit example:

Correctness follows from convexity.

Intuitively, the greedy strategy works because there are no local maxima.

Say we are at a vertex \(v \) and all of \(v \)'s neighbors have the same or worse value.

Consider the profit line passing through \(v \).

The rest of the feasible region is below this line.

So \(v \) must be optimal.
Efficiency & the simplex method

In practice the simplex method has excellent efficiency. But what can we prove? We know that

\[\# \text{vertices in polytope} \leq \binom{m}{n} \]

because a vertex consists of \(n \) constraints at equality.

Good news: the simplex method terminates in finite time.

Bad news: the above bound is huge (exponential in input size)

There are many variations of the simplex method on how to choose next vertex, and it is an open problem if there is a variation making it run in polynomial time. But there are other algorithms that run in polynomial time:

- ellipsoid method
- interior point method
Another example (it's important to practice mapping a problem to LP)

A company making ski helmets wants to minimize total costs.

- Monthly demand d_1, \ldots, d_{12}
- 50 employees each costing $4k$/month, producing 20 helmets/month
- Overtime is 1.5x more expensive, and can be max 25% more
- Hiring is 300/worker, firing is 400/worker
- Surplus storage is 10/helmet/month (0 at start and at end)

We can write an LP for this:

Variables:
- $w_i = \#$ workers in month i
- $x_i = \#$ helmets made in month i
- $o_i = \#$ helmets made in month i via overtime
- $h_i, f_i = \#$ workers hired/fired at start & month i
- $s_i = 0, s_i = \#$ helmets stored at end of month i

Constraints:
- $x_i = 20 \cdot w_i + o_i$
- $w_i = w_{i-1} + h_i - f_i$
- $s_i = s_{i-1} + x_i - o_i$
- $o_i \leq \frac{1}{4} (20 \cdot w_i)$

Objective function: $\min \quad 4000 \sum_i w_i + 300 \sum_i h_i + 400 \sum_i f_i + 10 \sum_i s_i + \frac{3}{2} \cdot \frac{4000}{20} \sum_i o_i$

This is hard to solve by hand, but very efficient on a computer.
A caveat: fractions

We may need to round so the cost will increase correspondingly.

In the example we have large numbers so rounding is not a big issue. But in general it is a delicate matter.

Alternative:

integer linear programming = only integer solutions to a LP

But this problem is NP-complete as we will see later in the course.