Lecture #19
Search Problems, P and NP

- Last time: Reductions $A \rightarrow B$
 - $A \rightarrow B$ means can solve A using subroutine for B
 - B "easy" (poly-time) \Rightarrow A easy
 - A "hard" (no poly-time alg known) \Rightarrow B hard
- Goal - try to classify problems as easy or hard
- Def: A Binary Relation
 - Def: decide(R)
 - Def: search(R)
Search Problem - Example

- Def: A Binary Relation is a subset $R \subseteq \{0,1\}^* \times \{0,1\}^*$ of pairs of finite bit strings, $(x, w) = (\text{instance, witness})$

- Def: $\text{decide}(R) =$ given instance x, decide if $\exists w$ such that $(x, w) \in R$ (output = yes/no)

- Def: $\text{search}(R) =$ given instance x, find a witness w such that $(x, w) \in R$ if it exists, else "no"

- Ex: Max Flow
 - Instance:
 - Witness:
 - Decide (R)
 - Search (R)
Does \text{decide}(R) always exist?

• Focus on binary relations R that are efficiently verifiable:

• New question: given V_R, how hard is $\text{decide}(R)$?
Defining P and NP

- $P =$
- $NP =$
Defining NP-hard and NP-complete

- P = "complexity class" of all relations R such that $\text{decide}(R)$ costs $\text{poly}(1 \times 1)$ ($P"polynomial")$
- $NP = \text{all relations } R \text{ such that given } x, \exists w \text{ of size } |w| = \text{poly}(1 \times 1), \text{so } V_R(x, w) \text{ costs } \text{poly}(1 \times 1)$ when $R(x, w) = 1$ for some w
- $Ex: \text{ if } V_R(x, w) \text{ costs } \text{poly}(1 \times 1)$

- Def: problem A is NP-hard if
- Def: problem A is NP-complete if
CSAT is NP-complete

- Def: CSAT is binary relation R_{CSAT} where
 $\left(C = \text{circuit}, w\right) \in R_{\text{CSAT}}$ if $C(w) = 1$

- Claim CSAT is NP-complete

CSAT in NP:

CSAT NP-hard:
Reducing CSAT to simpler problems: SAT

- Recall what a circuit is: DAG of gates
- Convert circuit to CNF = conjunctive normal form = and of clauses like \((x_1 \lor \overline{x_2} \lor \overline{x_3})\)
- One variable per gate in DAG:

 - \(f \) or becomes
 \[
 \begin{array}{c}
 \text{OR} \\
 x \\
 \downarrow \\
 y \\
 \end{array}
 \]
 - \(f \) and becomes
 \[
 \begin{array}{c}
 \text{AND} \\
 x \\
 \downarrow \\
 y \\
 \end{array}
 \]
 - \(f \) NOT becomes
 \[
 \begin{array}{c}
 \text{NOT} \\
 x \\
 \downarrow \\
 x \\
 \end{array}
 \]
 - \(f \) becomes
 \[
 \begin{array}{c}
 1 \\
 \downarrow \\
 0 \\
 \end{array}
 \]
Reducing SAT to simpler case: 3SAT

• Want to show "simple" problems are NP-complete, to make them easier to use to show others are

• 3SAT: SAT with \(\leq 3 \) variables per clause

 • Example: \((x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor x_4 \lor x_5) \land (x_2 \lor x_6) \land \ldots\)

• Trick to convert \((a_1, v_{a_2}, v_{a_3}, \ldots, v_{a_k})\) to 3SAT

 • Introduce new variables \(y_{i_1}, y_{i_2}, \ldots, y_{k-3} \)

 • Convert to

 • If all \(a_i = F \), making above expression = T \(\Rightarrow \)

 • If \(a_i = T \)
More NP-complete problems

All of NP

CSAT

SAT

3SAT
Reducing 3SAT to Independent Set (IS)

- **IS**: Does graph G have $\geq g$ unconnected vertices?

- **Ex**: $(\overline{x} \lor y \lor \overline{z}) \land (x \lor \overline{y} \lor v \lor z) \land (x \lor y \lor v \lor z) \land (\overline{x} \lor y \lor \overline{z})$

- Transform to graph where
 - each variable is
 - each clause is
 \Rightarrow
 - add edge between every
 \Rightarrow
 - Is there an IS of size

- Is expression satisfiable?
Reducing Independent Set (IS) to...

- Vertex Cover (VC): Subset $S \subseteq V$ that touch every edge
 - Fact:

- Clique (Cl): Subset $S \subseteq V$ that is fully connected
 - Fact:
Did I forget to prove anything?