Last time(s):
- reductions
- NP-hardness (and NP-completeness)
- reductions to establish NP-hardness & several natural problems

Today:

How to cope with NP-hardness?
You are interested to solve a computational task A.

Try to show that $A \in P$. (directly, or reduce to ShortestPaths, MaxFlow, LP, ...)

If you succeed then good.

Otherwise, try to show that A is NP-hard. (reduce from 3SAT, ...)

You are likely to succeed. (few problems are not believed to be in P nor NP-hard)

What to do if A is NP-hard?

A. find a special case & A that is in P (NP-hardness uses abstruse instances)

B. intelligent exponential search (mitigate the exponential)
via techniques such as backtracking, branch and bound, ...

C. use an approximation algorithm
 - efficient and incorrect, but not by much

D. use heuristics: no guarantees on running time or approximation,
 but informed by intuition of problem and inputs of interest
Approximation Algorithms for Optimization Problems

input: instance \(x \in I \), which induces a solution space \(S_x \) and value function \(\text{val}_x(.) \)

output: \(S^* \in S_x \) s.t. \(\text{val}_x(S^*) = \text{opt}(x) \) (\(\max_{s \in S_x} \text{val}_x(s) \), or \(\min_{s \in S_x} \text{val}_x(s) \))

Ex: maximum independent set, smallest-weight tour, ...

The approximation ratio of an algorithm \(A \) is

- for maximization problems: \(\chi(A) := \max_{x \in I} \frac{\text{opt}(x)}{\text{val}_x(A(x))} \in [1, \infty) \)
- for minimization problems: \(\chi(A) := \max_{x \in I} \frac{\text{val}_x(A(x))}{\text{opt}(x)} \in [1, \infty) \)

New goal: design efficient algorithms for NP-complete problems with as small approximation ratio as possible
Vertex Cover

A vertex cover $S \subseteq V$ is a vertex cover if $\forall e \in E \exists v \in S$ that is an endpoint of e.

Input: Undirected graph $G = (V, E)$

Output: Vertex cover $S \subseteq V$

Goal: Minimize $|S|$

VC is a special case of SetCover (given $S_1, \ldots, S_m \subseteq U$, find smallest $I \subseteq [m]$ s.t. $\cup_{i \in I} S_i = U$):

- Set $U := E$ and $S_i := \text{"edges incident to vertex } i\text{"}$.

VC is **NP-hard**: VC reduces to the NP-hard problem IS (if S is a vertex cover)

Theorem: VC has an approximation algorithm with approx ratio = 2

Idea: exploit a connection to matchings
def: M&E is a matching if edges in M don't share vertices

claim: \(S \subseteq V \) vertex cover \(\implies |M| \leq |S| \) (hence \(\max |M| \leq \min |S| \))

proof: \(\forall e \in M \exists v \in S \) that touches e (and no other edge) \(\blacksquare \)

def: For M&E define \(V(M) := \) all endpoints & edges in M.

claim: M&E maximal matching \(\implies V(M) \) vertex cover of size \(2|M| \)

proof: Since M is a matching, we know that \(V(M) \) has \(2|M| \) vertices. Moreover, if \(V(M) \) is not a vertex cover then \(\exists e \in E \) not touched by \(V(M) \), and so can add e to M. \(\blacksquare \)

This leads to a simple algorithm:

\[
A(G) := 1. \text{ Find a maximal matching } \widetilde{M} \text{ in } G. \\
2. \text{ Output } S := V(\widetilde{M}).
\]

• A **outputs a vertex cover** & is efficient
• A **has approx ratio 2:** \(\frac{\text{val}_G(A(G))}{\text{opt}(G)} = \frac{|V(\widetilde{M})|}{\min_S |S|} = \frac{2|\widetilde{M}|}{\min_S |S|} \leq \frac{2|\widetilde{M}|}{\max_M |M|} \leq \frac{2|\widetilde{M}|}{|\widetilde{M}|} = 2 \)
Hardness of Approximation

Not every NP-hard problem has approximation ratio 2.

Claim: if TSP has approx ratio 2 then $P=NP$

Proof: We show how to solve HamCycle (which is NP-complete) in polynomial time.

If $G \in \text{HamCycle}$ then G' has tour of length n.
If $G \not\in \text{HamCycle}$ then every tour must use at least one new edge and so must have length at least $(n-1) \cdot 1 + 1 \cdot 2n = 3n-1$.

An algorithm for TSP with approx ratio 2 can tell the difference.

The same argument also rules out any approx ratio $\omega(n)$ that is poly-time computable! (E.g. $\omega(n) = 2^n$.)

The study of inapproximability involves beautiful tools. See \Rightarrow
Heuristics

Say that we want to find maximum of \(f : \mathbb{R} \to \mathbb{R} \).

Naive idea: try inputs to \(f \) at random \(\Rightarrow \) this will not get us far

Better idea: follow the "up" direction (until you reach a maximum or get tired)

This is a fundamental idea from optimization known as **GRADIENT ASCENT**

\[z := \text{random starting point} \]

repeat \(M \) times

\[z' := \text{random point near } z \]

\[\text{if } \text{val}(z') > \text{val}(z) : z := z' \]

- \(M \) (\# iterations) is chosen heuristically
- "near" means from a neighborhood of \(z \), and choosing this definition matters a lot

Eg for TSP: pick two edges at random & cross them

The behavior depends on how \(f \) looks:

- finds maximum
- may find max after retrying
- \(\text{gradient ascent} \) works badly
Simulated Annealing

Idea: move to worse options with some probability

Fix a temperature schedule: probabilities $p_1 > p_2 > ... > p_n$ with an exponential decay.

The algorithm is:

$z := \text{random starting point}$

for $i=1,2,3,\ldots,N$:

repeat M times:

$z' := \text{random point near } z$

if $\text{val}(z') > \text{val}(z)$: $z := z'$

else w.p. p_i: $z := z'$

A reasonable first attempt to solve an NP-complete problem.