Lecture #24

CS 170
Spring 2021
Lower Bounds

- Complexity of a problem P is a function $T(P)$ that measures its cost (time/memory/...) as a function $f(n)$ of its input size n.
- An algorithm for P gives an upper bound on $f(n)$.
 - Eg: $P =$ sorting, $T(P) = \#$ comparisons
 - Insertion Sort $\Rightarrow f(n) \leq O(n^2)$
 - Merge Sort $\Rightarrow f(n) \leq O(n \log n)$
- A lower bound for P is a proof that $f(n) = \Omega(g(n))$.
 - Holds for any algorithm (in a class)
 - Eg: $f(n) = \Omega(n \log n)$ for $\#$ comparisons in sorting

1. $2^n \geq n! \geq (n/2)^{(n/2)}$ (not bucket sort)
Lower Bounds

- Recall NP-complete problems: 3SAT, ILP, ...
- widely believed lower bound: \(\Omega (n^{\omega(c)}) \)
 i.e. bigger than any polynomial
- Best known lower bounds: \(\Omega (n) \)
- Proving lower bounds is hard

CS172 preview

- "Time Hierarchy Thm"
- Given code implementing Boolean function \(C \) that takes a binary string \(X \) of length \(|X| = n \) as input, will \(C \) return true in \(\leq n^3 \) steps?
- Naive algorithm: run it for \(n^3 \) steps and see
- Thm: Any correct algorithm takes \(\Omega (n^{3-\varepsilon}) \) steps for some tiny \(\varepsilon \)
Examples of Lower Bounds for specific classes of algorithms

1) Circuit Complexity:
 - What size circuit (#wires or depth) is needed to solve a problem of input size n?

2) Cell Probe Model
 - How many reads/writes to memory are needed to solve a problem of size n?

3) Branching Program
 - How do time and memory needs trade off?

4) Communication Complexity
 - If Proc1 owns X, and Proc2 owns Y, how many bits do they need to exchange to compute f(X, Y)?
Circuit Complexity (113)

- **Problem**: Given $f : \{0,1\}^n \to \{0,1\}$, how big a circuit do you need to evaluate f?

 - Circuit = DAG of and, or, not gates

 - Size could be # wires, depth

- Ex $f : \{0,1\}^{10} \to \{0,1\}^{10}$ could multiply $x \cdot y$ where $x =$ first 5 bits of input, $y =$ last 5 bits

- What is known?

 - # circuits $= 2^{\Theta(w \log w)}$, $w =$ # wires

 - # functions on n input bits $= 2^{2^n}$

 - $2^{c w \log w} \geq 2^{2^n}$ \Rightarrow $C \cdot w \cdot \log w \geq 2^n$

 - Even if $w \approx 1.9^n$ most functions need more wires

 - Most $f : \{0,1\}^n \to \{0,1\}$ need exponentially many wires
Circuit Complexity (213)

- **Problem:** Given $f : \{0,1\}^n \rightarrow \{0,1\}$, how big a circuit do you need to evaluate f?
 - Circuit = DAG of and, or, not gates
 - Size could be $\# \text{wires}$, depth
- Most $f : \{0,1\}^n \rightarrow \{0,1\}$ need exponentially many wires
 - Do we know any?
- Best result so far (2016): $\# \text{wires} \geq (3 + \frac{1}{8e}) \cdot n$
- What about depth?
 - $f = \text{Parity} = \text{XOR}$ of all n input bits
 - Compute f using binary tree of depth $\log_2 n$
 - What if we restrict depth to a constant k?
 - and allow unbounded fan in:
 - Thm: need $\# \text{wires} = e^{\Omega(n)}$
Circuit Complexity (313)

• Problem: Given $f : \{0,1\}^n \rightarrow \{0,1\}$, how big a circuit do you need to evaluate f?
 • Circuit = DAG of and, or, not gates
 • Size could be # wires, depth

• Connection to NP-Completeness
 • Def: $P/poly =$ set of all problems that can be solved with circuit of $\# wires \leq \text{poly}(n)$
 • $P/poly$ is analogue of P for circuit complexity

• Known: $P \subseteq P/poly$

• Unknown: is $\text{NP} \subseteq P/poly$? If not, $P \not\equiv \text{NP}$
Cell Probe Model

- Algorithm is allowed to perform the following ops:
 - Processor can read a word (w bits) from memory location i, or write a word
 - How many reads/writes to memory are needed to solve a problem of size n?
 - Used to find lower bounds on cost of using data structures
Branching programs

- DAG to compute $f: \{0,1\}^n \rightarrow Y$
 - one source node
 - one sink node per element of Y
 - each non-sink nodes has 2 outgoing edges labelled $x_i=0$ or $x_i=1$, where x=input

- Adding 3 bits: $Y = \{0,1,2,3\}$

 ![Diagram]

 - Width $= 4 = 2$ \#bits needed
 - \#Layers $= 3 = \#steps$ to compute answer
 - \#runtime

- How do Width(\#bits) and \#Layers (runtime) trade off?
Communication Complexity (1/8)

- Alice and Bob both want \(f: (X,Y) \rightarrow \{0,1\} \)
- Alice only knows \(X \), Bob only knows \(Y \)
- They exchange messages, last one to receive a message announces \(f(X,Y) \)
- Goal: minimize \# bits Alice and Bob exchange

- Different kinds of algorithms allowed:
 - Deterministic
 - Public coin randomness: Alice and Bob have same random bits
 - Private coin randomness: Alice and Bob have their own random bits

- One way communication (Alice sends one message to Bob) vs. 2-way
Communication Complexity (2/8)

- Alice knows X, Bob knows Y, want $f(X,Y) \in \{0,1\}$
 while minimizing # bits exchanged
- Def: $D(f) =$ minimum # bits with deterministic alg
- Def: $R_{pub}(f) =$ minimum # bits with public coin randomness
- Def: $R_{priv}(f) =$ minimum # bits with private coin randomness
- Thm: $D(f) \geq R_{priv}(f) \geq R_{pub}(f)$

 Proof: 1st ineq: deterministic special case: ignore random bits
 2nd ineq: Alice uses 1st half of random bit, Bob 2nd half
- Def: $EQ(X,Y) = 1$ if $X = Y$ else 0
- Thm: $D(EQ) = \Theta(n)$, $R_{priv}(EQ) = O(\log n)$, $R_{pub}(EQ) = \Theta(1)$
- Simplify: consider one-way communication cost, $D^\rightarrow(f)$, Alice sends one message to Bob
Communication Complexity (3/8)

- Alice knows X, Bob knows Y, want $f(X,Y) \in \{0,1\}$
- Def: $D(f) =$ minimum #bits with deterministic alg where Alice sends one message to Bob

- Claim: $D(\text{EQ}) \geq n = |X|$
 proof: if Alice sends $g(X) \in \{0,1\}^m$ to Bob with $m < n$
 $\exists X_1 \neq X_2$ but $g(X_1) = g(X_2)$ so Bob can't tell the difference between X_1 and X_2

- Def: $DE =$ counting # distinct elements

- Claim: Any exact deterministic alg A for DE requires $\Omega(n)$ bits of memory (FM was random)
 proof: Show that if A solves DE with s bits, we can use A to solve EQ with $s + \log n$ bits, so
 $s + \log n \geq D(\text{EQ}) \geq n \Rightarrow s \geq n - \log n = \Omega(n)$
Communication Complexity (4/8)

• Alice knows X, Bob knows Y, want $f(X,Y) \in \{0,1\}$

• Def: $D(f)$ = minimum #bits with deterministic alg where Alice sends one message to Bob

• Claim: $D^>(EQ) \geq n = |X|$

• Def: DE = counting # distinct elements

• Claim: Any exact deterministic alg A for DE requires $\Omega(n)$ bits of memory (FM was random)

proof: Show that if A solves DE with s bits, we can use A to solve EQ with $s + \log n$ bits, so $s + \log n \geq D^>(EQ) \geq n \Rightarrow s \geq n - \log n = \Omega(n)$

How to use A to solve DE: For each $X_i = 1$, Alice feeds i into A, sends $(\text{mem}(A), \#1s \text{ in } X) = s + \log n$ bits to Bob

Bobs checks if $\#1s \text{ in } X = \#1s \text{ in } Y$. If yes, Bob ask A for $\#DE$, then feeds i for each $Y_i = 1$ into A and asks if $\#DE$ increases. If not, $X = Y$, else $X \neq Y$
Communication Complexity (5/8)

- **Claim**: Any exact deterministic alg A for DE requires $\Omega(n)$ bits of memory.

- **Claim**: Any approximate deterministic alg for DE $(|E - E| \leq 0.1|E|)$ also requires $\Omega(n)$ bits of memory.

Proof: Consider EQ where $X, Y \in B \subseteq \{0,1\}^n$.

Same argument as before $\Rightarrow \mathbb{D}^{\rightarrow}(EQ^B) \geq \log_2 |B|$

- Claim: (no proof!) \exists B such that $|B| \geq 2^{cn}$, all $X \in B$ have same #1s=r, and if $X, Y \in B$, $X \neq Y$, then #1s X and Y share $\leq \frac{r}{10}$.

(Think of $X, Y \subseteq \{1, \ldots, n\}$, so $|X| = |Y| = r$, $|X \cap Y| \leq \frac{r}{10}$)

Show that if A_{ap} solves DE with s bits, 1% error, we can use A_{ap} to solve EQ^B with s bits.

$\Rightarrow s \geq \mathbb{D}^{\rightarrow}(EQ^B) \geq \log_2 |B| \geq cn = \Omega(n)$
Communication Complexity (6/8)

Claim: Any approximate deterministic alg for DE ($|E - t| \leq 0.1t$) also requires $\Omega(n)$ bits of memory.

Proof: EQ where $X, Y \in B \subseteq \{0, 1\}^n$, $D^\rightarrow (EQ^B) \geq \log_2 |B|$

Claim: (no proof!) $\exists B$ such that $|B| \geq 2^{cn}$, all $X \in B$ have same #1s = r, and if $X, Y \in B$, $X \neq Y$, then #1s X and Y share $\leq \frac{r}{10}$

Show that if A_{ap} solves DE with s bits, 1% error, we can use A_{ap} to solve EQ^B with s bits

$$\Rightarrow s \geq D^\rightarrow (EQ^B) \geq \log_2 |B| \geq cn = \Omega(n)$$

How to use A_{ap} to solve EQ^B (similar to using A for EQ):

For each $X_i = 1$, Alice feeds i into A_{ap}, sends $mem(A_{ap})$ to Bob. Bob knows $\#DE = r$ (property of B). For each $Y_i = 1$, Bob feeds i into A_{ap}, asks for $\#DE$. 2 cases:

$X = Y \Rightarrow A_{ap}$ reports $\#DE \in [.99r, 1.01r]$ ($\frac{1}{10}$ different!)

$X \neq Y \Rightarrow A_{ap}$ reports $\#DE \in [.99 \cdot .9 \cdot r, 1.01 \cdot 2 \cdot r]$
Communication Complexity (7/8)

• Summary of counting distinct elements (DE)
 No exact, deterministic alg with o(n) memory
 No approx, deterministic alg with o(n) memory
 No exact, randomized alg with o(n) memory
 \Rightarrow need approx, randomized alg to use o(n) memory (FM)

• How to show \(B \) exists? Choose randomly, show it has right property with probability \(\geq 0 \)
Communication Complexity (8/8)

- **Goal:** minimize communication between main memory and cache, or between processors connected over a network.

![Diagram of a computer system with CPU, Cache, Main Memory, and interconnected processors P1, P2, P3, P4. The cache size is denoted as M.]

- Thm (Hong, Kung, 81) Any execution of $\Theta(n^3)$ matrix multiply moves $\Omega(n^3/\sqrt{M})$ words between Cache and main memory.

- Attained by "loop tiling", widely implemented.

- Extends to rest of linear algebra, any code that looks like nested loops accessing arrays.