Hashing

Goal: Build a "Dictionary": a data structure D with following properties:
- Contains key-value pairs $(k_1, v_1), \ldots, (k_n, v_n)$
- Assume all keys distinct

Implements $\text{Search}(D, k) = \begin{cases} v_i \text{ if } k = k_i \\ \text{nil} \text{ if } k \text{ not in } D \end{cases}$

Search as fast as possible
Size $|D|$ as small as possible

Also want insert $(D, (k, v))$ and delete (D, k) but won't discuss today
Dictionaries: 2 simple approaches

1: \(D = \) list of \(n \) \((\text{key}, \text{value})\) pairs sorted by key
 \(\text{search}(D, k)\) does binary search on keys
 \(\text{Time(search)} = O(\log n) \) ... \(O(\log n) \) as small as possible

2: \(U = \) set of all possible keys, treated as integers \(\in [1, |U|] \)
 \(D = \) array of length \(|U| \), \(D(k_i) = v_i \), other \(D(\cdot) = \text{nil} \)
 \(\text{search}(D, k)\) looks up \(D(k) \)
 \(\text{Time(search)} = O(1) \) ... as small as possible

\(|D| = O(1)\) ... enormous

Goal: \(\text{Time(search)} = O(1) \) and \(|D| = O(n) \)

Use hashing
Hashing

• Need a "hash function" $h: U \rightarrow [1, m]$, $m = O(n)$ where $h(k) \rightarrow$ linked list containing all (k, v) pairs with same $h(k)$

• Want h with as few "collisions" as possible, i.e. shortest linked lists, since
 $\text{Time(search)} = O(\text{length of longest linked list})$

• Best case: all linked lists same length $= \frac{n}{m}$
 • Some linked list $\geq \frac{n}{m}$

• Problem with choosing any one fixed h
 • \exists subset $U' \subseteq U$ of size $\geq |U|/m$ s.t. $h(U')$ = value
 • Ex: $h(k) =$ first $\log_2 m$ bits of k

• Solution: pick h randomly
Picking a random hash function

- Idea: If we pick h randomly from a set \mathcal{H}, it should assign roughly equally many keys to each linked list, independent of which keys appear.
- Def: \mathcal{H} is universal if for all $k \neq k'$, both in \mathbb{U}
 \[P(h(k) = h(k')) \leq \frac{1}{m}, \quad m = \# \text{linked lists} \]
- Thm: For all $1 \leq i \leq n$,
 \[\mathbb{E}(\# \text{keys in same linked list as } k_i) \leq \frac{n}{m} \]
 \[\text{Proof: let } C(i,j) = 1 \text{ if } h(k_i) = h(k_j), \quad 0 \text{ otherwise} \]
 \[\mathbb{E}(\# \text{keys in same linked list as } k_i) = \mathbb{E}\left(\sum_{j \neq i} C(i,j)\right) \leq \sum_{j \neq i} \mathbb{E}(C(i,j)) \leq \frac{1}{m} \leq \frac{n-1}{m} \]

- If we use a random hash function h from universal \mathcal{H} and $m = \Theta(n)$, $\mathbb{E}(\text{search time}) = \mathbb{E}(\# \text{keys in linked list}) = \Theta(1)$
Constructing a Universal H (1/2)

- **Def**: H is universal if for all $k \neq k'$, both in U,
 \[P(h(k) = h(k')) \leq \frac{1}{m}, \ m = \# \text{ linked lists} \]
- **First try**: if $h: U \rightarrow [1:m]$ completely random, costs $|U|$ to store, defeats goal of $O(n)$ memory
- **Second try**: inner product with random vector
 - Assume m prime (round up if needed)
 - Assume $|U| = m^r$ for some r \[\geq 0 \]
 - View each $k \in U$ in base m: \[k = \sum_{i=0}^{r} k^i \cdot m^i, \ 0 \leq k^i < m \]
 or \[k \equiv (k^0, k^1, ..., k^{r-1}) \]
 - **Def**: $H = \{ h_a, a \in U \} = \{ (a^0, a^1, ..., a^{r-1}), 0 \leq a^i < m \}$
 - $|h_a| = |a| = \log |U| = r \log m$, much smaller than before
 - **Def**: $h_a(k) = \sum_{i=0}^{r} a^i \cdot k^i \mod m$
Constructing a Universal \(\mathcal{H} \) (2/2)

- Def: \(\mathcal{H} \) is universal if for all \(k \neq k' \), both in \(U \)
 \[P(h(k) = h(k')) \leq \frac{1}{m}, \quad m = \# \text{ linked lists} \]

- Second try: inner product with random vector
- Assume \(m \) prime, \(|U| = m^r \) for some \(r \)
- Each \(k \in U: k = \sum_{i=0}^{r} k^{(i)} m^i, 0 \leq k^{(i)} \leq m \) or \(k = (k^{(0)}, k^{(1)}, \ldots, k^{(r-1)}) \)
- Def: \(\mathcal{H} = \{ h_a, a \in U \} = \{ (a^{(0)}, a^{(1)}, \ldots, a^{(r-1)}), 0 \leq a^{(i)} \leq m \} \)
- \(|h_a| = \|a\| = \log |U| = r \log m \), much smaller than before
- Def: \(h_a(k) = \sum_{i=0}^{r} a^{(i)} \cdot k^{(i)} \mod m \)
- Claim: Inner product hash family \(\mathcal{H} \) is universal
- Proof: \(P(h(k) = h(k')) = P(\sum_{i=0}^{r} a^{(i)} k^{(i)} = \sum_{i=0}^{r} a^{(i)} k'^{(i)} \mod m) \)
 \[= P(\sum_{i=0}^{r} a^{(i)} (k^{(i)} - k'^{(i)}) = 0 \mod m). \quad k \neq k' \Rightarrow \text{some } k^{(j)} \neq k'^{(j)} \Rightarrow \]
 \[= P(a^{(j)} (k^{(j)} - k'^{(j)}) = \sum_{i=0}^{r} a^{(i)} (k^{(i)} - k'^{(i)}) \mod m) \]
 \[= P(a^{(j)} = (k^{(j)} - k'^{(j)})^{-1} \cdot \sum_{i=0}^{r} a^{(i)} (k^{(i)} - k'^{(i)}) \mod m) \]
 \[= 1/m \text{ as desired, since each } a^{(j)} \text{ random in } [0, m-1] \]
Improving $E(\text{search time}) = O(1)$ to $\max(\text{search time}) = O(1)$

- **Def:** Perfect hashing uses 2 layers of hashing
 - **Layer 1:** $h_0 : U \rightarrow [1:m]$, maps each $u \in U$ to another hash function $h_1, ..., h_m$
 - **Layer 2:** $h_i : U \rightarrow [1:l_i]$, l_i chosen to have no collisions
- **Size goal:** $|D| = |h_0| + |h_1| + ... + |h_m| = O(n)$
- **Search time goal:** $\text{time}(h_0) + \text{time}(h_i) = O(1)$ for all i
- **Repetitively choose random** h_0, h_i until goals met
 - **Show** $P(\text{meeting goal}) \geq \frac{1}{2} \Rightarrow$
 - $E(\# \text{random choices of each } h_0, h_i \text{ needed}) \leq 2$
Improving $E(\text{search time}) = O(1)$ to $\max(\text{search time}) = O(1)$

- Def: Perfect hashing uses 2 layers of hashing
 - L_1: $h_o: U \rightarrow [1:m]$, maps each $u \in U$ to h_1, \ldots, h_m
 - L_2: $h_i: U \rightarrow [1:l_i]$, l_i chosen to have no collisions
- Size goal: $|D| = |h_0| + |h_1| + \cdots + |h_m| = O(n)$
- Search time goal: $\text{time}(h_0) + \text{time}(h_i) = O(1)$ for all i
- Repeatly choose random h_0, h_i until goals met

- How to sample:
 - L_1: Repeat: sample h_o until $\sum_{i=1}^{m} c_i^2 \leq \mu n$, $\mu = O(1)$
 where $c_i = \# \text{keys mapped to } i$
 - L_2: for $i = 1, m$, Repeat: sample $h_i: U \rightarrow [1:c_i^2]$ until no collisions
- Size goal: $|h_0| + |h_1| + \cdots + |h_m| = O(n) + \sum_{i=1}^{m} c_i^2 = O(cn)$
- Time goal: No collisions $\Rightarrow \text{time}(h_i) = O(1) \Rightarrow \text{time}(h_0) + \text{time}(h_i) = O(1)$
Improving $E(\text{search time}) = O(1)$ to $\max(\text{search time}) = O(1)$

- Definition: Perfect hashing uses 2 layers of hashing.
 - $L1$: $h_o : U \rightarrow [1 : m]$, maps each $u \in U$ to $h_1, ..., h_m$
 - $L2$: $h_i : U \rightarrow [1 : c_i]$, c_i chosen to have no collisions

- How to sample:
 - $L1$: Repeat: sample h_o until $\sum_{i=1}^{m} c_i^2 \leq \nu n$, $\nu = O(1)$

 where $c_i = \#$ keys mapped to i
 - $L2$: for $i = 1 : m$, Repeat: sample $h_i : U \rightarrow [1 : c_i]$ until no collisions

- Analysis of sampling h_i for $L2$:

 $P(\text{collision}) = P(h_i \text{ maps 2 of the } c_i \text{ keys to same index out of } c_i^2)$

 $= \sum_{k \neq k'} \mathbb{P}(h_i(k) = h_i(k'))$ $P(h_i(k) = h_i(k'))$

 $= \binom{c_i}{2} \frac{1}{c_i^2} \leq \frac{1}{2} \Rightarrow P(\text{successful sampling}) \geq \frac{1}{2}$
Improving $\mathbb{E}(\text{search time}) = O(1)$ to $\max(\text{search time}) = O(1)$

- **Def:** Perfect hashing uses 2 layers of hashing
 - $L1: h_o: U \rightarrow [1:m]$, maps each $u \in U$ to h_1, \ldots, h_m
 - $L2: h_i: U \rightarrow [1:c^i], i$ chosen to have no collisions

- **How to sample:**
 - $L1$: Repeat: sample h_o until $\sum_{i=1}^{m} c_i^2 \leq \mu n$, $\mu = O(1)$
 - where $c_i = \#$keys mapped to i
 - $L2$: for $i = 1:m$, Repeat: sample $h_i: U \rightarrow [1:c^i]$ until no collisions

- **Analysis of sampling h_o for $L1$:**
 - $\mathbb{E}(\sum_{i=1}^{m} c_i^2) = \mathbb{E}(\sum_{i=1}^{m} \left(\sum_{j=1}^{n} \mathbb{I}(h_o(k_j) = i) \right)^2) = \mathbb{E}(\sum_{i=1}^{m} \sum_{j=1}^{n} \mathbb{I}(h_o(k_j) = h_o(k_j') = i) \ldots \text{reverse sums}) = \mathbb{E}(\sum_{j,j' = 1}^{n} \mathbb{I}(h_o(k_j) = h_o(k_j') = i) = \mathbb{E}(\sum_{j,j' = 1}^{n} \mathbb{I}(h_o(k_j) = h_o(k_j'))) = n + \binom{n}{2} \cdot \frac{1}{m} = \Theta(n)$ because $m = \Theta(n)$

10. Markov: $P(\sum_{i=1}^{m} c_i^2 > \mu n) \leq \mathbb{E}(\sum_{i=1}^{m} c_i^2) / (\mu n) = \frac{\Theta(n)}{\mu n} \leq \frac{1}{2}$ if μ big enough