Proof of Optimality of Huffman Coding

Recall that the problem is given frequencies \(f_1, \ldots, f_n \) to find the optimal prefix-free code that minimizes
\[
\sum_{i}^{n} f_i \cdot \text{(length of encoding of the } i\text{-th symbol)}.
\]

This is the same as finding the full binary tree with \(n \) leaves, one per symbol in \(1, \ldots, n \), that minimizes
\[
\sum_{i=1}^{n} f_i \cdot \text{(depth of leaf of the } i\text{-th symbol)}
\]

Recall that we showed in class the following key claim.

\textbf{Claim 1 (Huffman’s Claim). There’s an optimal tree where the two smallest frequency symbols mark siblings (which are at the deepest level in the tree).}

We proved this via an exchange argument. Then, we went on to prove that Huffman’s coding is optimal by induction. We repeat the argument in this note.

\textbf{Claim 2. Huffman’s coding gives an optimal cost prefix-tree tree.}

\textit{Proof.} The proof is by induction on \(n \), the number of symbols. The base case \(n = 2 \) is trivial since there’s only one full binary tree with 2 leaves.

\textbf{Inductive Step:} We will assume the claim to be true for any sequence of \(n - 1 \) frequencies and prove that it holds for any \(n \) frequencies. Let \(f_1, \ldots, f_n \) be any \(n \) frequencies. Assume without loss of generality that \(f_1 \leq f_2 \leq \ldots \leq f_n \) (by relabeling). By Claim 1, there’s an optimal tree \(T \) for which the leaves marked with 1 and 2 are siblings. Let’s denote the tree that Huffman strategy gives by \(H \). Note that we are not claiming that \(T = H \) but rather that \(T \) and \(H \) have the same cost.

We will now remove both leaves marked by 1 and 2 from \(T \), making their father a new leaf with frequency \(f_1 + f_2 \). This gives us a new binary tree \(T' \) on \(n - 1 \) leaves with frequencies \(f_1 + f_2, f_3, f_4, \ldots, f_n \). We do the same for the Huffman tree giving us a tree \(H' \) on \(n - 1 \) leaves with frequencies \(f_1 + f_2, f_3, f_4, \ldots, f_n \). Note that \(H' \) is exactly the Huffman tree on frequencies \(f_1 + f_2, f_3, f_4, \ldots, f_n \) by definition of Huffman’s strategy. By the induction hypothesis,
\[
\text{cost}(H') = \text{cost}(T').
\]

Observe further that
\[
\text{cost}(T') = \text{cost}(T) - (f_1 + f_2)
\]
since to get \(T' \) from \(T \) we replaced two nodes with frequencies \(f_1 \) and \(f_2 \) at some depth \(d \) with one node with frequency \(f_1 + f_2 \) at depth \(d - 1 \). This lowers the cost by \(f_1 + f_2 \). Similarly,
\[
\text{cost}(H') = \text{cost}(H) - (f_1 + f_2).
\]

Combining the three equations together we have that
\[
\text{cost}(H) = \text{cost}(H') + f_1 + f_2 = \text{cost}(T') + f_1 + f_2 = \text{cost}(T).
\]