Set Cover

Input:
- Universe $U = \{1, 2, 3, \ldots, n\}$
- Collection of subsets $S_1, S_2, S_3, \ldots, S_m \subseteq U$ (s.t. $S_1 \cup S_2 \cup \ldots \cup S_m = U$)

Output:
- Minimal subcollection that covers U
 - Minimal Size $J \subseteq [m]$
 - s.t. $\bigcup_{j \in J} S_j = U$

For Example:
- $S_1 = \{1, 3, 5\}$
- $S_2 = \{2, 3, 4\}$
- $S_3 = \{1, 2, 3, 4\}$

Optimal Solution:
- $J = \{1, 3, 5\}$ or $J = \{2, 3, 7\}$
- $S_1 \cup S_3 = \{1, 2, 3, 4\}$
- $S_2 \cup S_3 = \{1, 2, 3, 4\}$

Greedy Strategy: Pick at any step the set that covers the most new points.

Today:
- Finish Greedy Set Cover.
- Dynamic Programming.
Algorithm:

1. $J \leftarrow \emptyset$.

2. While $S_J \neq U$:
 - Pick $i \in J$ with largest $|S_i \setminus S_J|$ (covers the most new points)
 - Add $i \in J$.

3. Output J.

Is it correct? No.

Counterexample:

Greedy will pick all 6 sets
optimal solution: 5 sets (just the "petals"
"Greedy solution is not too bad":

If optimal solution uses \(k \) sets, then greedy uses at most \(k \cdot \ln(n) + 1 \) sets.

Proof: We keep track of \(n_t = \# \) of uncovered points after \(t \) iterations of the greedy algorithm.

\(n_0 = n = |U| \). We'll show that \(n_t \) decreases rapidly.

\(\Rightarrow \) after not too many iterations, \(n_t = 0 \).

Claim: \(n_1 \leq n_0 - \frac{n_0}{k} \).

Since optimal solution uses \(k \) sets

\(\Rightarrow \) if a set in it that covers at least \(\frac{n}{k} \) points

Greedy picks largest set which is of size \(\geq \frac{n}{k} \). \(\Box \)
Claim 2: \(n_{t+1} \leq n_t - \frac{n_t}{k} \).

Proof:

Optimal solution covers these \(n_t \) pts.

\[\Rightarrow \] one of its sets covers \(\geq \frac{n_t}{k} \) new pts.

\[\Rightarrow \] The set picked by greedy covers at least \(\frac{n_t}{k} \) new pts.

Q.E.D. Claim 2.

Back to main proof: We showed that for all \(t \geq 0 \)

\[n_{t+1} \leq n_t \cdot (1 - \frac{1}{k}) \leq \ldots \leq n_0 \cdot (1 - \frac{1}{k})^{t+1} \leq n \cdot \left(e^{-\frac{t+1}{k}} \right) = n \cdot e^{-\frac{t+1}{k}} \]

Sufficient to find minimal \(t \) such that \(n \cdot e^{-\frac{t+1}{k}} < 1 \) since then \(n_{t+1} < 1 \) and greedy covered all pts.

\[\text{find } \min_t: \ n \cdot e^{-\left(\frac{t+1}{k}\right)} < 1 \]

\[\Leftrightarrow \]

\[n < e^{\left(\frac{t+1}{k}\right)} \]

\[\Leftrightarrow \]

\[\ln(n) < \left(\frac{t+1}{k}\right) \]

\[\Leftrightarrow \]

\[k \cdot \ln(n) < t+1 \]

\[\Leftrightarrow \]

Picking \(t = \left\lfloor k \cdot \ln(n) \right\rfloor \) guarantees that \(n_{t+1} < 1 \) and thus \(n_{t+1} = 0 \).

\[\Rightarrow \] greedy picks at most \(\left\lfloor k \cdot \ln(n) \right\rfloor + 1 \) sets.

Q.E.D. Theorem
New Topic: Dynamic Programming

Main Idea: To solve a big problem find subproblems s.t. the solution to the big problem can be easily derived from the solutions to subproblems.

Alternative View: Recursion, but using memoization.

Example: Given \(n \), compute the \(n \)th Fib. number, \(F_n \).

Subproblems: For \(i = 2, 3, \ldots, n-1 \) compute \(F_i \).

\[
\begin{align*}
F_0 &= 0, \quad F_1 = 1 \\
\text{For } i = 2, \ldots, n \\
F_i &= F_{i-1} + F_{i-2}.
\end{align*}
\]

\[
F_n = F_{n-1} + F_{n-2}
\]

```
def Fib(n):
    if n <= 1:
        return n
    return Fib(n-1) + Fib(n-2)
```
def FibMem(n):
 if n <= 1:
 return n
 if n in Mem:
 return Mem[n]
 Mem[n] = Fib(n-1) + Fib(n-2)
 return Mem[n]

Example:
Recursion tree for FibMem(100).
We can view each subproblem as a node and we have directed edges \(i \rightarrow j \) if subproblem \(j \) solution depends directly on subprob. \(i \)’s solution.

The DAG for \(\text{Fib}(n) \):
Problem:

Recall: Given $G = (V, E)$ with $l: E \rightarrow \mathbb{Z}$ (we can handle both positive & negative weights)

Given $s, t \in V$.

Goal: Find longest path $s \to t$.

Approach:
- Define a collection of subproblems: shortest path from s to v for any $v \in V$.
- Write a recurrence:
 $$\text{dist}[v] = \min_{u: (u,v) \in E} (\text{dist}(u) + l(u,v))$$

- Write edge cases:
 $$\text{dist}[s] = 0$$
 $$\text{dist}[v] = \infty \quad \text{if } v \text{ is a source}.$$
- Analyze runtime & Memory.

There are n subproblems.

Each subproblem takes $O(\text{indeg}(v) + 1)$.

Overall: $\sum_{v \in V} c \cdot (\text{indeg}(v) + 1) = c \cdot (1 + 1) = O(n + E)$.

Memo: $O(n)$.

Longest Shortest Path in a DAG
Next Time:
- Longest Increasing Subsequence.
- Edit Distance: Aligning DNA sequences, spell checker, plagiarism finding.
- Knapsack
- Traveling Salesman
- All Pairs Shortest Paths.
- Viterbi?

1 2 2 4 7 ≤ 6