Bipartite Matching Problem (BM)

Input: Bipartite Graph \(G = (L, R, E) \) with \(E \subseteq L \times R \)

Defn: A matching is a set of edges \(M \subseteq E \) s.t.
- no pair of edges in \(M \) touches the same vertex.

Goal: find maximum matching, i.e., \(\max |M| \)
- s.t. \(M \subseteq E \) is a matching.

We show how to solve BM using an algorithm for MaxFlow.
What if a flow gets split?

Fact: If all capacities are integers then there a max flow.

$|M|$ matching M on a bipartite graph G

$\text{val}(f)$ integral flow on network G
Claim: Suppose M is a matching in G. Then f integral flow on G with $\text{val}(f) = |M|$.

Proof:

Push 1 unit of flow on edges in M.

$L(M) =$ vertices in L touching M

$R(M) =$ " R " M.

Push 1 unit of flow from s to v, $\forall v \in L(M)$.

Push 1 unit of flow from u to t, $\forall u \in R(M)$.

$\text{val}(f) = |L(M)| = |M|$.

\square
Claim: f is an integral flow on \tilde{G}

Then, \exists a matching M on G s.t. $|M| = \text{val}(f)$.

Proof: Since capacities in \tilde{G} are all 1, the flow on each edge could be either 0/1.

$$M = \{ (u,v) : u \in L, v \in R, f_{u,v} = 1 \}.$$
The notion of a reduction

"a problem \(A \) reduces to a problem \(B \) if any subroutine to solve \(B \) can be used to solve \(A \)"

In more detail:

\[\begin{align*}
\text{pre-processing} & \quad \text{efficient} \\
\text{efficient} \quad & \quad \text{efficient}
\end{align*} \]

\(x \rightarrow \quad \text{y} \rightarrow \quad \text{B} \rightarrow \quad B(y) \rightarrow \quad \text{A}(x) \rightarrow \)

\(\circ \) an efficient alg for \(B \) \(\Rightarrow \) an efficient alg for \(A \).

A reduction = pre-processing + post-processing.

\(\circ \) If an efficient alg for \(B \) \(\Leftrightarrow \) an efficient alg for \(A \)
Matrix Multiplication Strassen

\[
\log_2 n = n^{\log_2 7} \approx n^{2.8}
\]

\[
\begin{array}{c|c|c}
\hline
n & \sqrt{n} & \sqrt{n} \\
\hline
A & n & B \\
\hline
\end{array}
\]

\[
C = n \\
\sqrt{n} \times \sqrt{n}
\]

want to compute

\[
A^{-1} \\
\sqrt{n}
\]

\[
A \cdot A^{-1} = I
\]

Matrix Mult \rightarrow Matrix Inverse

\[
\begin{bmatrix}
A & B \\
\end{bmatrix}_{n \times n}
\]

\[
\begin{bmatrix}
I_n & A & 0 \\
0 & I_n & B \\
0 & 0 & I_n
\end{bmatrix}
\]

\[
\begin{bmatrix}
I - A & AB \\
0 & I - B
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 0 & I
\end{bmatrix}
\]
Rudrata Cycle

$G = (V, E)$ undirected
find a cycle that visits all vertices exactly once.

Rudrata path

$G = (V, E)$ undirected, source s, target t
goal: find a path from s to t that visit all vertices exactly once.
If G has a Rudrata path from s to t,

$\Rightarrow G'$ has a Rudrata cycle.

$\Rightarrow G$ has a Rudrata path from s to t.

If G, s, t Rudrata Path

Rudrata Cycle

G'

G

x s t

\Rightarrow Rudrata Path

Rudrata Cycle

G

x s t

G'

\Rightarrow Rudrata Cycle

G'

G

x s t

\Rightarrow Rudrata Path

Rudrata Cycle