Announcements:
- Project will be released this week. Start figuring out project teams. (up to 3 per team)
- New section: Mondays 2PM
 Annamira & Adnana.

See Piazza for more details.
Recap: Reductions

"a problem \(A \) reduces to a problem \(B \) if any subroutine to solve \(B \) can be used to solve \(A \)"

In more detail:

\[\begin{align*}
&\text{pre-processing} \\
&\text{efficient} \\
&x \rightarrow \rightarrow y \\
&\text{efficient} \\
\end{align*} \]

\[\begin{align*}
B(y) &\rightarrow A(x) \\
\text{post-processing} \\
\text{efficient} \\
\end{align*} \]

\(\circ \) an efficient alg for \(B \) \(\Rightarrow \) an efficient alg for \(A \).

A reduction = \(\text{pre-processing} + \text{post-processing} \).

\(\circ \) \(\text{if an efficient alg for } B \leq_\mathcal{A} \text{ an efficient alg for } A \)
Recap: Rudrata Cycle & Rudrata Path

Rudrata Cycle Problem:
Given an undirected graph $G = (V, E)$
Is there a cycle that visits each vertex exactly once?

a.k.a. Hamiltonian Cycle

Rudrata st-path problem:
Given an undirected graph $G = (V, E)$, nodes s & t
Is there a path from s to t that visits each vertex exactly once?

RudPath ≤ RudCycle

To prove correctness:

- If G has an st-Rudrata Path $\Rightarrow G'$ has a Rudrata Cycle
- If G has no st-Rudrata Path $\Rightarrow G'$ has no Rudrata Cycle
Exercise from last time

RudCycle ≤ RudPath?

Given G

Pick some vertex $v = G$ duplicate it v', v''

and both v', v'' have same neighbors as v

Claim: G has RudCycle $\iff G'$ has a RudPath from v' to v''.
Search, Decision & Optimization Problems

So far we talked mainly about optimization problems.

For Example: 1. Find shortest path from s to t.
 2. Find Best prefix-free Encoding.
 3. Find Maximum Flow.

Search Problems:

Examples 1. Given G, s, t & Budget B, find a path of length $\leq B$ from s to t (if one exists)
 2. Given f_1, \ldots, f_m & A Budget B, find a prefix-free tree of cost $\leq B$ (if one exists)
 3. Given G find a Rudrada Cycle (if one exists)

Decision Problems: Given G, s, t & Budget B, is there a path of length $\leq B$ from s to t?
Search Problems

Def'n: A language \(L \) is a subset \(\{0,1\}^* \).

Def'n: A binary relation \(R \) is a subset \(R \subseteq \{0,1\}^* \times \{0,1\}^* \).

We say that a binary relation is "efficiently verifiable" if given \((x,y)\) there exists an efficient algorithm that decides whether \((x,y) \in R\).

- \((x,y) \in R \Rightarrow |y| \leq \text{poly}(|x|) \) (witnesses are \(\text{poly}(|x|) \) -length).
- Runtime of algorithm (verifier): at most \(\text{poly}(|x|) \).

Example: \[R = \{ (G, c) \mid G \text{ is an undirected graph, } c \text{ is a cycle in } G \text{ that visits every vertex once} \} \]

Def'n: \(L(R) = \{ x \mid \exists y, (x,y) \in R \} \) Language assoc. with \(R \).

Decide \((R) = \text{Given } x \text{ decide whether } \exists y : (x,y) \in R \).

Search \((R) = \text{Given } x \text{ find } y : (x,y) \in R \text{ if one exists.} \)
Observe: If R is "efficiently verifiable" then $\text{Decide}(R)$ can be solved $2^{\text{poly}(|x|)}$ time.

Proof: Given x:

1. For every possible $y \in \{0, 1\}^{\text{poly}(|x|)}$:
 - check whether $(x, y) \in R$. (poly-time).
 - accept \hspace{1cm} continue

2. Reject.

$2^{\text{poly}(|x|)} \cdot \text{poly}(|x|)$ time.
$\mathsf{P} = \{ L(R) \text{ s.t. } \text{Decide}(R) \text{ can be solved efficiently} \}$

$\mathsf{NP} = \{ L(R) \text{ s.t. } R \text{ is efficiently verifiable} \}$

$\mathsf{P} \subset \mathsf{NP}$

NP is non-deterministic.

$R = \{ ((G,s,t,B),P) : P \text{ is a path from } s \text{ to } t \text{ with length } \leq B \}$

Decide(R) efficiently? Yes, Dijkstra $L(R) \in \mathsf{P}$.

$R = \{ (G,C) : C \text{ is a Hamiltonian cycle in } G \}$

$L(R) \in \mathsf{NP}$

$L(R) \in \mathsf{P}$.

$L(R) \in \mathsf{NP}$

$L(R) \in \mathsf{P}$. $L(R) \in \mathsf{P}$.
Does \(P = NP \)?
NP Completeness

Def: A problem \(A \) is **NP-Hard** if \(\forall B \in \text{NP} \) \(B \rightarrow A \) (\(B \leq_A A \)).

Def: A problem \(A \) is **NP-complete** if \(A \) is NP-hard and \(A \in \text{NP} \).

There exist NP-complete problems!

\[
\begin{align*}
B &\rightarrow A \text{ is NPC} \quad \Rightarrow \quad C \text{ is NPC.} \\
A &\rightarrow C \\
B &\rightarrow A \rightarrow C
\end{align*}
\]

\(B \rightarrow A \rightarrow C \)

- Pre-process
- Post-process

\(C \text{ is in NP} \)
\[B \leq A \leq C \]
\[\Rightarrow B \leq C. \]
Def'n: A circuit is a directed acyclic graph with input nodes marked by x_1, \ldots, x_n & gates: OR gate, AND gate, Not gate.

Example:

\[\begin{array}{ccc}
\neg & & \\
\lor & & \\
\lor & & \\
\end{array} \]

1 output.

Def'n: CSAT (Circuit Satisfiability). Given circuit C on inputs y_1, \ldots, y_m decide whether $\exists y \in \{0,1\}^m$ s.t. $C(y) = 1$.

size = # of gates
"Claim": suppose algorithm A runs on inputs of length n in time t. Then, there exists a circuit of size $O(t^2 \cdot n)$ that "simulates" A.

Idea:

$\text{layer } t$

$\text{layer } t-1$

\vdots

$\text{layer } 1$

$\text{layer } 0$:

input & initial state of A

State of memory & registers after i steps
\[R = \{ (c, y) : c(y) = 1 \} \]

\[L(R) = \text{CSAT}. \]

\[\text{NPC} = \text{NP}^H + \text{NP} \]