Greedy Algorithms (continued)

Last Time
- The student’s Problem.
- MST
- The Cut Property
- Kruskal’s Algorithm

Today
- Finish Kruskal.
- Prim’s Algorithm.
- Compression - Huffman Coding.
- Set Cover.

Recap:
MST: Given an undirected graph $G = (V, E)$ with weights $w: E \rightarrow \mathbb{N}$, find a tree T that connects all vertices in V and minimizes $\sum_{e \in E(T)} w(e)$.

"The Cut Property":
- The cheapest edge crossing a cut $(S, V \setminus S)$ appears in some MST.
- More refined: Let $X \subseteq E$ and an MST T such that $X \subseteq E(T)$. Suppose that X doesn’t cross a cut $(S, V \setminus S)$. If e is the cheapest edge crossing $(S, V \setminus S)$ then $X \cup \{e\}$ is contained in some MST T'.
Meta Algorithm

- $X \leftarrow \emptyset$
- For $i = 1, \ldots, |V|-1$:
 - Find a cut $(S, V \setminus S)$ s.t. X doesn't cross it.
 - Add cheapest edge in the cut to X.

Kruskal(G, w):

1. $X \leftarrow \emptyset$,
2. Sort edges by their weight.
 a. For every $v \in V$, make set $(\{v\})$.
3. For all edges $e \in E$, ordered by weight:
 - If adding e to X creates a cycle, then skip
 - Else, $X \leftarrow X \cup e$.

Last Time: We saw the PoC for Kruskal, based on the Cut Property.

Implementation / Runtime?

Naive Implementation

Runtime: n makesets m finds $n-1$ unions $O(i)$ $O(\log v)$ $O(\log v)$ $O(E \log E + E \log |V|)$.

\Rightarrow Total runtime: $O(E \log E)$.
Meta Algorithm

- \(X \leftarrow \emptyset \)
- For \(i = 1, \ldots, |V| - 1 \):
 - Find a cut \((S, V \setminus S)\) such that \(X \) doesn’t cross it.
 - Add the cheapest edge in the cut to \(X \).

Prim’s Algorithm

Idea: At each point in time, \(X \) would be a subtree.

- At each step, pick the minimal edge between
 \(S = \{ v : X \text{ touches } v \} \)
 and its complement.

How to implement?

Similar to Dijkstra’s Alg.
- \(\text{prev}(v) = \arg\min_{u \in S} w(u, v) \)
- \(\text{cost}(v) = \min_{u \in S} w(u, v) \)

Maintain \(A \forall v \in S \)

Pick \(v \in S \) with smallest cost.
Add \((v, \text{prev}(v))\) to \(X \).
Data Compression

We have an alphabet of 32 characters & frequencies \(f_1, \ldots, f_{32} \). Say we have a text with \(N \) characters and we want to encode it as efficiently as possible in binary.

Naive: Every character \(\rightarrow 5 \) bits
Overall: \(5N \) bits

Example:

<table>
<thead>
<tr>
<th>Freq</th>
<th>Encoding 1</th>
<th>Cost 1</th>
<th>Encoding 2</th>
<th>Cost 2</th>
<th>Encoding 3</th>
<th>Cost 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>00</td>
<td>0.4N \cdot 2</td>
<td>0</td>
<td>0.4N \cdot 1</td>
<td>0</td>
<td>0.4N \cdot 1</td>
</tr>
<tr>
<td>0.3</td>
<td>01</td>
<td>0.3N \cdot 2</td>
<td>1</td>
<td>0.3N \cdot 2</td>
<td>10</td>
<td>0.3N \cdot 2</td>
</tr>
<tr>
<td>0.2</td>
<td>10</td>
<td>0.2N \cdot 2</td>
<td>00</td>
<td>0.2N \cdot 3</td>
<td>110</td>
<td>0.2N \cdot 3</td>
</tr>
<tr>
<td>0.1</td>
<td>11</td>
<td>0.1N \cdot 2</td>
<td>01</td>
<td>0.1N \cdot 3</td>
<td>111</td>
<td>0.1N \cdot 3</td>
</tr>
</tbody>
</table>

\(2N \cdot 2 + 0.9N \) bits
Prefix Free Codes & Trees

Any prefix-free code corresponds to a binary tree & vice versa.

Example:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Prefix-free encoding:

Given symbol frequencies \(f_1, \ldots, f_n \), find the best prefix-free code.

\[
\text{cost}(\text{tree}) = \sum_{i=1}^{n} f_i \cdot \text{(depth of symbol } i \text{ in the tree)}
\]

Cost: Associate with every internal node \(v \), \(f_v = \sum_{u \text{ descendants of } v} f_u \)

Cost of prefix tree:

\[
\sum_{\text{internal node } v} f_v
\]
Greedy: which nodes to merge first.

Example: (A, 0.4) (C, 0.1) (T, 0.2) (G, 0.3)

(A, 0.4)

(C, 0.1)

(T, 0.2)

(G, 0.3)

6.3 (S, 0.3)

0.6 (S, 0.6)

Huffman: There's an optimal tree where the two lowest freq are siblings.

Proof: toLoc an optimal tree is a full-binary tree.

\(f_1 \leq f_2 \leq f_3 \ldots \leq f_n \)

swap(1, u) \(\not\equiv \) either improves value or maintains the same value.

swap(2, v)
Claim: Huffman's strategy gives an optimal prefix-free tree.

Proof: By induction on n.

Base case: $n=1$, $n=2$

\[\text{Induction step: Let } T \text{ be an optimal tree s.t. } \]
\[f_i \text{ and } f_2 \text{ are siblings. (Assuming } t_1 \leq f_2 \leq f_3 \text{ --)} \]

Huffman merge f_i & f_2 and then solve recursively on f_3, f_4, \ldots, f_n.

\[\Rightarrow \text{ Huffman on } n \text{ freq.} \]
Set Cover

Input: Universe $U = \{1, 2, 3, \ldots, n\}$
Collection of subsets $S_1, S_2, S_3, \ldots, S_m \in U$

(s.t. $S_1 \cup S_2 \cup \ldots \cup S_m = U$)

Output: Minimal subcollection that covers U.

Minimal Size $J \subseteq [m]$\text{ s.t. } \bigcup_{j \in J} S_j = U$

For Example:

- $S_1 = \{1, 2, 3\}$
- $S_2 = \{3, 4\}$
- $S_3 = \{2, 3, 4\}$

$$S_1 \cup S_2 \cup S_3 = \{1, 2, 3, 4\}$$

- $J = \{1, 3\}$
- $S_1 \cup S_3 = \{1, 2, 3, 4\}$

Greedy strategy? Pick at any time the set that covers most new points.
Algorithm:

1. $J \leftarrow \emptyset$.

2. While $S_J \neq U$:

 Pick $i \in J$ with largest $|S_i \setminus S_J|$ (covers the most new points)

 Add $i \in J$.

3. Output J.

Is it correct? No.

Counterexample:

Greedy strategy:

Greedy: will pick all sets $\Rightarrow |J| = 6$.

Optimal solution: 5.
Claim: “Greedy solution is not too bad”:
If optimal solution uses k sets, then greedy finds J with $|J| \leq k \cdot \ln(n) + 1$.