
Closer one step at a time

CS 170 Spring 2024

December 12, 2024

Point Pursuit in Two Dimensions

Consider the following game played between two players, whom
we call Alice and Bob.1 There is a point p∗ = (x∗, y∗) on the 2- 1 This game is set on the 2-dimensional

plane; we will later see that the game
and its properties also generalize in any
number of dimensions.

dimensional plane.

Point Pursuit in 2-dimensions

In the tth iteration,

1. Bob proposes a point p(t) = (x(t), y(t)).

2. Alice finds a separating line ℓ(t) that separates Bob’s current point
p(t) from the destination p∗. Formally, p∗ is on one side of the line
ℓ(t), but p(t) is at least ϵ-away from the line on the opposite side
(see Figure (1)).

Alice loses when she is unable to find a separating line.

ℓ(t)

ϵ

v(t)

p∗

p(t)

Figure 1: A separating line ℓ(t)

between Bob’s current point p(t)

and destination p∗.

Let v(t) denote the unit vector perpendicular to Alice’s separating
line ℓ(t). Consider the following strategy for Bob:

p(t+1) = p(t) + ϵv(t) , (1)

in words, Bob moves a distance of ϵ directly towards the separating
line ℓ(t). With this strategy, we will see that Bob gets closer to the
point p∗ in each step.

Claim 1. (Bob keeps getting closer) In each iteration, the squared
distance of Bob’s point p(t) to p∗ decreases by ϵ2

Proof. Consider any iteration t. By shifting and rotating the 2-
dimensional plane, we may assume the following (see Figure 2):

ℓ(t)

ϵ

ϵ

Y

X
p∗

p(t)

p(t+1)

Figure 2: Bob moves ϵ closer to
the line. The picture is drawn
after rotating and shifting.

• p∗ is the origin.

• The separating line is parallel to x-axis, so let’s say the line is y = c
for some c ⩾ 0.

Let us suppose p(t) = (x, y). Moving ϵ distance towards the line, Bob
will end up at p(t+1) = (x, y− ϵ). The squared distances to p∗ are

∥p(t) − p∗∥2 = x2 + y2 and ∥p(t+1) − p∗∥2 = x2 + (y− ϵ)2

So the change in the squared distance is,

∥p(t) − p∗∥2 − ∥p(t+1) − p∗∥2 = 2yϵ− ϵ2 ⩾ ϵ2

In the last inequality, we used the fact that y ⩾ ϵ, since p(t) is at least
ϵ above a horizontal line ℓ(t) which itself is above the origin p∗.

2

Let p(0) denote Bob’s location in the first iteration. Since Bob’s
squared distance keeps dropping by ϵ2 in every iteration, the game
can’t go on for too long.

Theorem 2. If Bob plays strategy given by (1), then Alice fails to find a

separating line within
⌈
∥p(0)−p∗∥2

ϵ2

⌉
iterations.

Point Pursuit in High Dimensions

The strategy we developed for Bob in two-dimensions is actually suc-
cessful for the point pursuit game in arbitrary dimensions. Towards
seeing this, let us first get comfortable in d-dimensional space, by
defining the quantities we need.

Geometry in Any Dimensions

The inner product of two vectors x, y ∈ Rd is defined as

⟨x, y⟩ =
d

∑
i=1

xi · yi.

Inner product is bilinear in the arguments, so ⟨x + x′, y⟩ = ⟨x, y⟩+
⟨x′, y⟩ and ⟨x, y + y′⟩ = ⟨x, y⟩ + ⟨x, y′⟩. Furthermore, ⟨λx, y⟩ =

λ⟨x, y⟩ = ⟨x, λy⟩ for any real number λ. For example, the following
calculation makes sense,

⟨2a + 3b, 4c + 5d⟩ = ⟨2a, 4c⟩+ ⟨2a, 5d⟩+ ⟨3b, 4c⟩+ ⟨3b, 5d⟩
= 8⟨a, c⟩+ 10⟨a, d⟩+ 12⟨b, c⟩+ 15⟨b, d⟩

The Euclidean length of a vector x ∈ Rd is given by,

∥x∥ =
√

x2
1 + x2

2 + . . . + x2
d .

Observe that

∥x∥2 =
d

∑
i=1

x2
i = ⟨x, x⟩

A line in 2-dimensions is defined by the set of points x = (x1, x2)

such that,
⟨v, x⟩ − θ = 0

All points on one side of the line satisfy ⟨v, x⟩ − θ > 0, while ⟨v, x⟩ −
θ < 0 on the other side. In 3-dimensions, an equation of the form
⟨v, x⟩ − θ = 0 form a plane.Analgously, in higher dimensions, the set
of points such that ⟨v, x⟩ − θ = 0 form a "hyperplane”. On two sides of
this hyperplane are points wherein ⟨v, x⟩ − θ > 0 and ⟨v, x⟩ − θ < 0
respectively.

3

A hyperplane is the set of points x ∈ Rd that satisfy an equation of
the form,

⟨v, x⟩ − θ = 0

Here the vector v ∈ Rd is the normal vector to the hyperplane, and
can be normalized so that its length is 1.

We now have all the ingredients to talk about the point pursuit
game in d dimensions.

Point Pursuit in d-dimensions

In the tth iteration,

1. Bob proposes a point p(t) ∈ Rd.

2. Alice finds a separating hyperplane that separates Bob’s current
point p(t) from the destination p∗. Formally, Alice finds v(t), θ(t)

such that v is a unit vector and,

⟨v(t), p∗⟩ − θ(t) ⩾ 0

while
⟨v(t), p(t)⟩ − θ(t) ⩽ −ϵ.

Notice that the above pair of inequalities also implies,

⟨v(t), p(t) − p(∗)⟩ ⩽ −ϵ (2)

Alice loses when she is unable to find a separating line.

A succesful strategy for Bob is the following:

p(t+1) = p(t) + ηv(t) , (3)

In particular, just like 2-dimensions, we have,

Theorem 3. If Bob plays strategy given by (3) with η = ϵ, then Alice fails to

find a separating line within
⌈
∥p(0)−p∗∥2

ϵ2

⌉
iterations.

The reasoning is analogous to 2-dimensions as well. We will argue
that Bob’s squared distance to the destination keeps decreasing by
ϵ2 in each step. Therefore, the game cannot go on for more than∥∥∥p(0) − p∗

∥∥∥2
/ϵ2 steps.

Before we understand why Bob keeps getting closer every step
(Claim 1), let us record a small piece of useful calculation here (see
Appendix for the calculation).

4

Fact 4. (A useful calculation) If p(t+1) = p(t) + ηv(t) then∥∥∥p(t+1) − p∗
∥∥∥2
−
∥∥∥p(t) − p∗

∥∥∥2
= 2η ·

〈
v(t), (p(t) − p∗)

〉
+ η2

By the above fact,∥∥∥p(t+1) − p∗
∥∥∥2
−
∥∥∥p(t) − p∗

∥∥∥2
= 2η ·

〈
v(t), (p(t) − p∗)

〉
︸ ︷︷ ︸

⩽−ϵ from Eq(2)

+ϵ2

⩽ −2ηϵ + ϵ2

⩽ −ϵ2 setting η = ϵ.

In words, the above inequality says that Bob’s squared distance
decreases by ϵ2 each step.

Solving Linear Programs

The feasibility problem for a general linear program is to find a point
x satisfying a set of constraints.

Feasibility problem for linear programs:2 2 Minimization or maximization ver-
sions of linear programs can be con-
verted to a feasibility problem, by
inserting the objective function as a
constraint. For example, to maximize
⟨w, x⟩, one can include a constraint of
the form ⟨w, x⟩ ⩾ B, and use a binary
search to find the largest B for which
the resulting linear program is feasible.

Find a point x ∈ Rd such that

⟨a1, x⟩ ⩾ b1

⟨a2, x⟩ ⩾ b2

. . .

⟨am, x⟩ ⩾ bm

Assume that the constraints of the linear program are normalized so
that ∥ai∥ = 1 for all i = 1, . . . , m. Otherwise, we can always divide
each constraint by an appropriate scaling factor to make ∥ai∥ = 1.

The point-pursuit game can be used to solve this linear program
efficiently. In each iteration, Bob proposes a solution x(t) for the
above linear program. Alice looks for a constraint violated by Bob’s
solution, i.e., a constraint for which,

⟨ai, x(t)⟩ ⩽ bi − ϵ.

and returns the constraint as a separating hyperplane.
The idea is as follows: Let x∗ be any solution that satisfies all the

constraints of the linear program. Note that Alice does not know
such an x∗. By definition, x∗ will satisfy ⟨ai, x∗⟩ ⩾ bi. If Bob’s solu-
tion has ⟨ai, x(t)⟩ ⩽ bi − ϵ, then ℓ(x) = ⟨ai, x⟩ − bi is a separating
hyperplane between x∗ and x(t).

5

Therefore, if Alice and Bob continue to play the game then within
∥x(0) − x∗∥2/ϵ2 steps, the game will be up. In other words, within
these many steps, Bob will arrive at a solution x(t) for which Alice
fails, i.e., ⟨ai, x(t)⟩ ⩾ bi − ϵ for all i = 1, . . . , m.

Here is a description of the algorithm to solve LPs that simulates
both Alice and Bob’s play.

Algorithm 1: Solving LPs via Gradient Descent

x0 ← 1
for t = 0 to T do

• (Find violated constraint) Find a constraint ⟨ai, x⟩ ⩾ bi violated
by the x(t) with an error at least ϵ, i.e.,

⟨ai, x(t)⟩ ⩽ bi − ϵ

If there is no violated constraint then return x(t).

• Set
x(t+1) ← x(t) + η · ai

end for
return "No feasible solution within distance ϵ

√
T of the starting point

x(0) = 0"

3

3 A drawback of this algorithm is that it
can only find solutions within a fixed
distance ϵ

√
T of the initial point. Often,

the constraints of the linear program
immediately imply a bound on the
distance ∥x∥ of a feasible solution, and
this may suffice. For example, if the
variables are constrained as 0 ⩽ xi ⩽ 1,
then ∥x∥ ⩽

√
n for all feasible x.

6

Exponential-sized linear programs

Algorithm 1 for solving linear programs has a curious feature. The
number of constraints in the linear program does not directly affect
the run-time of the algorithm. Instead, all that matters is whether
given a candidate solution x(t), one can find a constraint it violates.
We will see how this can be harnessed to solve linear programs with
possibly exponentially many constraints!

Min-Cost Arborescence

Arborescence is a natural generalization of spanning trees to directed
graphs. Fix a directed graph G and a vertex v within. An arborescence
rooted at v is a directed tree containing all the vertices of the graph G,
with v being the root and all the tree edges being directed away from
the root (see Figure 3).

v

Figure 3: An arborescence
rooted at vertex v is shown in
blue.

In the Min-Cost Arborescence problem, the input is a directed
graph G with a specified vertex v, along with non-negative weights
w : E → R on the edges. The goal is to find the arborescence rooted
at vertex v with the minimum cost.

Here is a canonical linear program for the problem. For each
directed edge e, associate a variable xe whose intent is to indicate
whether the edge e belongs to the arboresecence.

Consider any partition of the vertices S ∪ S = V (see Figure 4).
If v ∈ S then there is at least one edge of the arborescence leaving
the set S. Otherwise, S would not be reachable from v in the arbores-
cence. Therefore, we can write the following constraint for every
partition S ∪ S = V,

∑
e:e=u→w where u∈S,w∈S

xe ⩾ 1 for all S ∪ S = V with v ∈ S (4)
v S

Figure 4: A set S containing
the vertex v. Any arborescence
rooted at v must pick at least
one edge leaving the set S.

The objective function to minimize is naturally ∑e∈E wexe.
The above linear program for Min-Cost Arborescence has exponentially-

many constraints, one for each subset S ⊂ V. Yet, one can solve this
linear program efficiently using Algorithm 1, by finding a violated
constraint efficiently (in polynomial time).

Suppose we are given a candidate solution x for the above linear
program. Notice that the constraint (4) for each S, is equivalent to
the following: If we set the weights of edges e to be xe, then the mini-
mum cut between v and any other vertex u is at least 1. Therefore, to
check if x satisfies all the constraints (4), it is sufficient to assign ca-
pacities xe and compute minimum cuts between v and other vertices
u. Therefore, one can find a violating constraint using n− 1 Min-Cut
computations.

7

Convex optimization

Convex sets

Definition. (Halfspaces) A halfspace is the set of points on one side of a
hyperplane, formally, for some w ∈ Rd and a real number θ,

H =
{

x ∈ Rd∣∣⟨w, x⟩ − θ ⩾ 0
}

Definition. (Convex Set) A convex set is an intersection of a (possibly
infinite) family of halfspaces.

See the figure below for a few examples of convex sets expressed
as intersections of halfspaces. Notice that a circular disk can be
obtained by an intersection of infinitely many halfspaces.

Figure 5: A triangle is an in-
tersection of three halfspaces,
while a circular disk D can be
obtained via an intersection of
infinitely many halfspaces

Consider a convex set S , and let us say that S is the intersection
of a family of halfspaces H, i.e., S = ∩H∈HH. Consider any point x
not in the set S . This implies that x is not in some halfspace H ∈ H.
In other words, whenever a point x is outside of a convex set, there is
always some halfspace that separates the convex set from x.

Fact. (Separating halfspaces always exist) If x is a point that is not in a
convex set S 4 then there exists a separating halfspace H such that, 4 The fact only holds for a closed convex

set. Without going into the definition,
we will only consider closed convex
sets.

S ⊆ H but x /∈ H

Let us understand convex sets a little better by looking at another
equivalent definition for them.

Definition. (Convex sets: equivalent definition) A set S ⊆ Rd is a convex
set if for every pair of points x, y within S, the line segment joining them is
also contained in S 5 . 5 For a pair of points x, y ∈ Rd, the line

segment joining them is given by all
points of the form z = λ · x + (1− λ) · y
for some λ ∈ [0, 1]. Hence, a set S is
convex if and only if,

x, y ∈ S =⇒ λ · x+(1−λ) · y ∈ S for all λ ∈ [0, 1]

Intuitively, a convex set S is a set of points that has no holes
within them or no depressions on the boundary (See Figure 6,Figure 7

and Figure 8 for a few examples of convex and non-convex sets.)

8

Figure 6: Two-dimensional
convex sets

Figure 7: Three-dimensional
convex sets: the tetrahedron
and the sphere

A separation oracle O for a convex set S is an algorithm that given a
point x not in S , will find a halfspace separating x from the set S .

In the previous section, we saw how Alice and Bob can use the
point-pursuit game to find a feasible point for a linear program. In
that context, Alice was playing the role of a separation oracle for the
convex set that is the feasible region of the linear program, i.e., a
violating constraint is nothing but a separating halfspace. Notice
that the setup of Algorithm 1 makes sense even if we had infinitely
many constraints (a.k.a. halfspaces), as long as we can find a violated
constraint efficiently. Therefore, one can use Algorithm 1 to find
points inside general convex sets for which we have a separation
oracle. Let us formalize this intuition here.

Definition. (Separation Oracle) An ϵ-separation oracle O for a convex set S
is an algorithm that solves the following problem:
Input: A point x that is at least ϵ-away from the convex set S .
Output: A halfspace H = {y|⟨w, y⟩ − θ ⩾ 0} such that S ⊆ H but the
point x is ϵ-away from H. The point x is ϵ-away from H if ∥w∥ = 1 and

⟨w, x⟩ − θ ⩽ −ϵ

Theorem 5. Given an ϵ-separating oracle O for a non-empty convex set
S , the algorithm Algorithm 2 finds a point x that is at most ϵ-away from the
set S using T = Ω(D2/ϵ2)-calls to the oracle O. Here D is the distance of
the initial point x(0) from the set S .

9

Figure 8: Two-dimensional
non-convex sets

Algorithm 2: Finding a point in a convex set given the separation
oracle
Input: A separation oracle O for some convex set S
Output: A point x that is at most ϵ-away from the convex set S

for t = 0 to T do

• (Find a separating halfspace) Use the oracle O to find a halfs-
pace that separates the current point x(t) from the convex set S ,
i.e., ⟨w, x(t)⟩ − θ ⩽ −ϵ while, ⟨w, x⟩ − θ ⩾ 0 for all x ∈ S .

If there is no separating halfspace then return x(t).

• Set
x(t+1) ← x(t) + η · w

end for

10

Exercise 6. Consider the following problem:

D isk Interior Problem

Input: n circular disks on the two-dimensional plane specified by {(xi, yi, Ri)|i =
1, . . . , n} where (xi, yi) is the center and Ri is the radius of the ith disk.
Output: A point p∗ = (x∗, y∗) that is inside all the disks (approximately).
Formally, the point p∗ must be within distance ϵ from the interior of every
disk.

1. Consider the convex set S consisting of a single circular disk centered at
(α, β) with radius R. Show how to implement an ϵ-separating oracle for
S .

2. Prove that the intersection of a family of convex sets is convex. This will
imply that the intersection of a family of disks is a convex set.

3. Show how to use Algorithm 2 for the disk intersection problem. Can
you make the running time be O(n · r2/ϵ2) where r is the radius of the
smallest disk?

4. What happens in every step of the algorithm?

Convex functions

Definition 7. A function f : Rd → R is a convex function if for all
points x, y,

f
(

x + y
2

)
⩽

f (x) + f (y)
2

Intuitively, for every pair of points on the graph of f , the graph of
the function dips under the line joining them (see Figure 9).

x

f (x)

Convex

(x1, f (x1))

(x2, f (x2))

Figure 9: A convex function
dips under the line joining any
pair of points on the graph.

An equivalent definition of convexity for functions that have first
derivatives is,

Fact 8. A function is convex if and only if the following holds for all x, x∗,

⟨∇ f (x), x− x∗⟩ ⩾ f (x)− f (x∗)

A corollary of the above fact is the following,
“The gradient of a convex function gives a separating half-space between any
point x and the global minimum x∗."

Suppose x∗ is the global minima of f and let x be a point with
f (x)− f (x∗) ⩾ ϵ. From Fact 8, we get that

⟨∇ f (x), x− x∗⟩ ⩾ ϵ

11

−2

0

2

−2 −1 0 1 2

0

5

x1
x2

f(
x 1

,x
2)

Convex Function in 2 Variables

2

4

6

8

f(
x 1

,x
2)

Figure 10: Convex function
f (x1, x2) = x2

1 + x2
2

In other words, if we set v = ∇ f (x)
∥∇ f (x)∥ then

⟨v, x⟩ − ⟨v, x∗⟩ ⩾ ϵ

∥∇ f (x)∥

Analogous to (2), this is to say that the hyperplane normal to vector v
is a separating hyperplane.

Alice and Bob can thus play the point pursuit game where for
every point x(t) proposed by Bob, Alice just responds with the hyper-
plane defined by the gradient ∇ f (x(t)). Bob will quickly converge to
a point where the value of f is close to the global minimum f (x∗).

More directly, this algorithm just walks downhill or moves along the
negative gradient a.k.a. it is gradient descent.

Algorithm 3: Gradient descent for convex function
Input: A convex function f : Rd → R such that ∥∇ f (x)∥ ⩽ B for all
x, and a starting point x(0) ∈ Rd.

for t = 0 to T do
Set

x(t+1) ← x(t) − ϵ

B
· ∇ f (x(t))
∥∇ f (x(t))∥

end for
return " x(t) among t = 0, . . . , T with the smallest value for f (x(t))."

Theorem 9. Let f : Rd → R be a convex function such that the gradient
vector is always bounded by B. Let x∗ be the minimum value of f within a
distance ϵ

√
T/B of the starting point x(0), i.e.,

f (x∗) = min
x such that ∥x−x0∥⩽ ϵ

√
T

B

f (x)

12

The algorithm returns a point x where,

f (x)− f (x∗) ⩽ ϵ

As per the above theorem, the algorithm is guaranteed to find the
minimum value of f within a certain distance ϵ

√
T/B of the starting

point. To find the global minimum, one needs to set T large enough.
For the sake of completeness, we include a proof of the theorem

below.

Proof. Let us prove the theorem by contradiction. Suppose for all
iterations x(t), f (x(t))− f (x∗) ⩾ ϵ. Then by Fact 8, for each t,

⟨∇ f (x(t)), x(t) − x∗⟩ ⩾ ϵ.

Since ∥∇ f (x(t))∥ ⩽ B we get that,〈
∇ f (x(t))
∥∇ f (x(t))∥

, x(t) − x∗
〉

⩾
ϵ

B
. (5)

By our useful little calculation (Fact 4),

∥∥∥x(t+1) − x∗
∥∥∥2
−
∥∥∥x(t) − x∗

∥∥∥2
= 2η ·

〈
∇ f (x(t))
∥∇ f (x(t))∥

, x(t) − x∗
〉
+ η2

where η = − ϵ

B

⩽ − ϵ2

B2 using inequality (5)

In words, the squared distance to the minimum x∗ drops by ϵ2/B2

in every iteration. By definition of x∗, the initial distance ∥x∗ −
x(0)∥2 ⩽ ϵ2

B2 T. This is a contradiction, since squared distance cannot
go negative.

Multiplicative updates and KL-divergence

We began our study with the point pursuit game. For the game over
Rd, we designed a strategy for Bob that decreases squared distance to
destination each step.

As it turns out, this is just one example of a general class of strate-
gies for Bob. In particular, there is a successful strategy for Bob given
any space S , and a so-called "Bregman divergence" on it 6. The space 6 We won’t get into the general setup

here. Interested reader may look up
"mirror descent", Bregman divergence

Rd and the squared distance is just the most natural example.
Now we will study another very natural example, namely the

space of probability distributions. Let us recall the point pursuit
game again, this time on probability distributions. Let p∗ be a proba-
bility distribution over {1, . . . , n}.

13

Point Pursuit on Probability Distributions

In the tth iteration,

1. Bob proposes a probability distribution

p(t) = (p(t)1 , . . . , p(t)n)

over {1, . . . , n}.

2. Alice finds a separating hyperplane ℓ(t) that separates Bob’s current
point p(t) from the destination p∗. Formally, Alice finds a vector
ℓ(t) so that, 〈

ℓ(t), p(t) − p∗
〉
⩾ ϵ (6)

wherein each coordinate of |ℓ(t)| ⩽ 1.

Alice loses when she is unable to find a separating hyperplane.

Bob’s strategy from the first section is not appropriate here, since
p(t+1) = p(t) + ηℓ(t) might take on negative values, while probability
distributions need to be positive.

A different strategy for Bob is to update his probabilities multi-
plicatively. So Bob multiplies his ith probability p(t)i by a factor of

e−ηℓ
(t)
i , and then scales all the probabilities so that they sum to 1.

Formally, Bob’s update rule is,

p(t+1)
i = p(t)i · exp(−ηℓ

(t)
i) · 1

Z
where Z is the scaling factor to ensure that the probabilities sum to 1.
So,

Z = ∑
i

p(t)i exp(−ηℓ
(t)
i)

To analyze this multiplicative strategy for Bob, we need an appro-
priate distance 7 measure on probability distributions. The Kullback- 7 Divergences are not distances in

the usual sense of the word. For
example, divergences are not symmetric
DKL(p∥q) ̸= DKL(q∥p)

Leibler distance between probability measures will be useful to this
end.

Definition 10. Given two probability distributions p, q over {1, . . . , n}
the KL-divergence DKL(p∥q) is given by,

DKL(p∥q) =
n

∑
i=1

pi log
(

qi
pi

)

14

As in the first section, the idea would be to argue that the KL-
divergence to the destination distribution keeps dropping in every
iteration. First, we need a version of Fact 4 for KL-divergence.

Fact 11. Let p∗, q be probability distributions over {1, . . . , n}. For some
vector ℓ ∈ Rn, let q′ be the distribution re-weighted by eηℓi , i.e.,

q′i =
qi · e−ηℓi

∑n
i=1 qie−ηℓi

Then if |ℓi| ⩽ 1 for all i,

DKL(p∗∥q)−DKL
(

p∗∥q′
)
⩾ η ⟨ℓ, q− p∗⟩ − η2

We defer the above calculation to the appendix. Let us set the
step-size parameter η = ϵ

2 . By Fact 11 and Equation (6) we get,

DKL

(
p∗∥p(t)

)
−DKL

(
p∗∥p(t+1)

)
⩾ η

〈
ℓ(t), p(t) − p∗

〉
− η2 ⩾

ϵ2

4

In words, the KL divergence of Bob’s distribution to p∗ drops by
ϵ2

4 . Moreover, unlike squared distance in Rd, the KL-divergence of
distributions on {1, . . . , n} is always bounded by log n.

Theorem 12. With a step-size of η = ϵ
2 , Alice fails to find a separating

hyperplane after 4 log n
ϵ2 iterations.

Online convex optimization

We will now see how the framework of the point pursuit game is use-
ful beyond minimizing fixed convex functions over convex sets. Here
is a curious feature of the basic argument of point pursuit. Suppose
Alice hasn’t chosen on a destination point p∗ and is responding with
arbitrary halfspaces. Yet, if it so turns out that in the end, by say an
accident, there is some p∗ that is separated on average by many of
Alice’s halfspaces, then Bob would have arrived close to p∗. We will
clarify this intuition with a concrete example now.

Consider a day-trader who is managing a portfolio consisting of n
stocks. On each day, the trader has a trading budget of B dollars. By
a suitable scaling of the units, let us just assume B = 1 henceforth.

On day t, the trader buys p(t)i dollars worth of stock i, and sells
them all at the end of the day. Let us suppose the price of stock i
decreases ℓ

(t)
i percent on day t 8. The total loss (or profit) incurred by 8 The loss ℓ

(t)
i will be a negative number

if stock appreciates on day ithe trader on day t is,

∑
i
ℓ
(t)
i p(t)i = ⟨ℓ(t), p(t)⟩.

15

At the end of T days, we will compare the day-trader’s losses
to the best fixed portfolio p∗ in hindsight. In other words, suppose we
knew all of the losses/profits (the numbers ℓ

(t)
i) of the stocks on all T

days apriori on day 1. Armed with this knowledge, we are allowed to
buy a fixed portfolio of stocks, say p∗i dollars of stock i on day 1 and
hold the stocks till the end of day T. Then, the total loss incurred by
such a best fixed portfolio in hindsight would be,

min
p∗ :∑i p∗i =1

T

∑
t=1
⟨ℓ(t), p∗⟩

The regret of the day-trader is the difference between their loss and
the best fixed portfolio in hindsight,

Regret =
T

∑
t=1
⟨ℓ(t), p(t)⟩ − min

p∗ :∑i p∗i =1

T

∑
t=1
⟨ℓ(t), p∗⟩

The average regret is just the regret per day,

AverageRegret =
1
T

(
T

∑
t=1
⟨ℓ(t), p(t)⟩ − min

p∗ :∑i p∗i =1

T

∑
t=1
⟨ℓ(t), p∗⟩

)
Can we have strategies for the day-trader that provably have

nearly zero average regret? Let’s think about this for a moment. We
want the day-trader to compete against someone who knows all
of the stock movements ahead of time on day 1 but need to pick a
fixed portfolio. How could the day-trader do well in comparison?
Surprisingly, our techniques can be used to achieve nearly zero regret
over a long number of days.

Algorithm 4: Multiplicative weights

η ← 1√
T

p0 ← (1/n, . . . , 1/n)
On day t + 1,
• Set

p(t+1)
i ← 1

Z
· p(t)i exp(−ηℓ

(t)
i)

where Z = ∑i p(t)i exp(−ηℓ
(t)
i)

Theorem 13. For every sequence of loss vectors ℓ(t), with |ℓ(t)i | ⩽ 1, the
average regret of multiplicative weights algorithm after T days is at most
2 log n√

T

Notice that the average regret per day approaches 0 as T → ∞!

Proof. Let us suppose p∗ is the optimal fixed portfolio in hindsight.
We will use Fact 11 on q = p(t) and ℓ = ℓ(t) to conclude,

DKL

(
p∗∥p(t)

)
−DKL

(
p∗∥p(t+1)

)
⩾ η

〈
ℓ(t), p(t) − p∗

〉
− η2

16

for day t. Let us rewrite this inequality as,〈
ℓ(t), p(t)

〉
−
〈
ℓ(t), p∗

〉
⩽

1
η

(
DKL

(
p∗∥p(t)

)
−DKL

(
p∗∥p(t+1)

))
+ η

In words, the left-hand side of the above inequality is the regret on day
t, since it is the difference between the loss of day-trader and the loss
of the optimal portfolio in hindsight p∗.

Let us write down the above inequality for each day 1, . . . , T,

RegretDay 1 ⩽
1
η

(
DKL

(
p∗∥p(1)

)
−DKL

(
p∗∥p(2)

))
+ η

RegretDay 2 ⩽
1
η

(
DKL

(
p∗∥p(2)

)
−DKL

(
p∗∥p(3)

))
+ η

RegretDay 3 ⩽
1
η

(
DKL

(
p∗∥p(3)

)
−DKL

(
p∗∥p(4)

))
+ η

· · ·
· · ·

RegretDay T− 1 ⩽
1
η

(
DKL

(
p∗∥p(T−1)

)
−DKL

(
p∗∥p(T)

))
+ η

RegretDay T ⩽
1
η

(
DKL

(
p∗∥p(T)

)
−DKL

(
p∗∥p(T+1)

))
+ η

Observe what happens to the right-hand sides if we add these in-
equalities together. The consecutive KL-divergences cancel (telescope)
and we get,

TotalRegret ⩽
1
η

(
DKL

(
p∗∥p(1)

)
−DKL

(
p∗∥p(T+1)

))
+ ηT

Fix η = 1/
√

T and use the fact that DKL

(
p∗∥p(1)

)
⩽ log n

AverageRegret ⩽
1

ηT

(
DKL

(
p∗∥p(1)

)
−DKL

(
p∗∥p(T+1)

))
+ η ⩽ O

(
2 log n√

T

)

17

Exercises

Exercise 14. There are N-hours of grading to be done. There are n TAs and
the ith TA wishes to grade for at least ℓi and at most ui hours. We would
like to allocate the grading to the TAs. An allocation would be unfair if a
subset of 10% of the TAs do more than 50% of the grading work.

• Write a linear program for the problem (your program will have exponen-
tially many constraints).

• Design an efficient algorithm which solves the following problem: Given a
candidate solution x to the linear program, find an LP constraint violated
by x violated constraint if there exists one. (a.k.a., design an efficient
separation oracle for the LP)

• Think through how the separation oracle implies an algorithm to solve the
LP, via the point pursuit game.

18

Appendix: Some Calculations

Proof of Fact 4

Fact. (A useful calculation)∥∥∥p(t+1) − p∗
∥∥∥2
−
∥∥∥p(t) − p∗

∥∥∥2
= 2η ·

〈
v(t), (p(t) − p∗)

〉
+ η2

Proof. To see the above fact, let’s begin by writing out the first term,∥∥∥p(t+1) − p∗
∥∥∥2

=
〈
(p(t) − p∗) + ηv(t), (p(t) − p∗) + ηv(t)

〉
=
〈
(p(t) − p∗), (p(t) − p∗)

〉
+ 2

〈
ηv(t), (p(t) − p∗)

〉
+
〈

ηv(t), ηv(t)
〉

=
∥∥∥p(t) − p∗

∥∥∥2
+ 2η ·

〈
v(t), (p(t) − p∗)

〉
+ η2 ·

∥∥∥v(t)
∥∥∥2

︸ ︷︷ ︸
=1 since v(t) is unit vector

Rearranging the terms, Fact 4 follows.

Proof of Fact 11

Fact. Let p∗, q be probability distributions over {1, . . . , n}. For some vector
ℓ ∈ Rn, let q′ be the distribution re-weighted by eηℓi , i.e.,

q′i =
qi · e−ηℓi

∑n
i=1 qie−ηℓi

Then if |ℓi| ⩽ 1 for all i,

DKL(p∗∥q)−DKL
(

p∗∥q′
)
⩾ η ⟨ℓ, q− p∗⟩ − η2

Proof. Let us denote
Z = ∑

i
qie−ηℓi

Notice that

Z = ∑
i

qie−ηℓi

⩽ ∑
i

qi(1− ηℓi + η2ℓ2
i) since ex ⩽ 1 + x + x2 for x ∈ [−1, 1]

⩽ ∑
i

qi(1 + η2)− η ∑
i

qiℓi because |ℓi| ⩽ 1

⩽ (1 + η2)− η⟨q, ℓ⟩ because ∑
i

qi = 1

⩽ eη2−η⟨ℓ,q⟩ using 1 + x ⩽ ex

Hence we have that,
log Z ⩽ η2 − η⟨ℓ, q⟩ (7)

19

DKL(p∗∥q)−DKL
(

p∗∥q′
)
= ∑

i
p∗i

(
log
(

p∗i
q∗i

)
− log

(
p∗i
q′i

))
= ∑

i
p∗i log

(
q′i
qi

)

= ∑
i

p∗i log

(
e−ηℓi

Z

)
= −∑

i
p∗i log Z + ∑

i
p∗i log e−ηℓi

= − log Z− η ∑
i

p∗i ℓi

⩾ −η2 + η⟨ℓ, q⟩ − η⟨ℓ, p∗⟩ using Equation(7)

⩾ η ⟨ℓ, q− p∗⟩ − η2

20

	Point Pursuit in Two Dimensions
	Point Pursuit in High Dimensions
	Solving Linear Programs
	Exponential-sized linear programs
	Convex optimization
	Multiplicative updates and KL-divergence
	Online convex optimization
	Exercises
	Appendix: Some Calculations

