1 Asymptotic Complexity Comparisons

(a) Order the following functions so that for all \(i, j \), if \(f_i \) comes before \(f_j \) in the order then \(f_i = O(f_j) \). Do not justify your answers.

- \(f_1(n) = 3^n \)
- \(f_2(n) = n^{\frac{1}{3}} \)
- \(f_3(n) = 12 \)
- \(f_4(n) = 2^{\log_2 n} \)
- \(f_5(n) = \sqrt{n} \)
- \(f_6(n) = 2^n \)
- \(f_7(n) = \log_2 n \)
- \(f_8(n) = 2^{\sqrt{n}} \)
- \(f_9(n) = \log_2 n \)

As an answer you may just write the functions as a list, e.g. \(f_8, f_9, f_1, \ldots \)

(b) In each of the following, indicate whether \(f = O(g) \), \(f = \Omega(g) \), or both (in which case \(f = \Theta(g) \)). Briefly justify each of your answers. Recall that in terms of asymptotic growth rate, logarithmic < polynomial < exponential.

<table>
<thead>
<tr>
<th>(f(n))</th>
<th>(g(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\log_3 n)</td>
<td>(\log_4(n))</td>
</tr>
<tr>
<td>(n \log(n^4))</td>
<td>(n^2 \log(n^3))</td>
</tr>
<tr>
<td>(\sqrt{n})</td>
<td>((\log n)^3)</td>
</tr>
<tr>
<td>(n + \log n)</td>
<td>(n + (\log n)^2)</td>
</tr>
</tbody>
</table>

2 Bit Counter

Consider an \(n \)-bit counter that counts from 0 to \(2^n - 1 \). As it moves from \(x \) to \(x + 1 \), it tracks how many bits were flipped from \(x \).

When \(n = 5 \), the counter has the following values:

\[
\begin{array}{ccc}
\text{Step} & \text{Value} & \text{# Bit-Flips} \\
0 & 00000 & - \\
1 & 00001 & 1 \\
2 & 00010 & 2 \\
3 & 00011 & 1 \\
4 & 00100 & 3 \\
\vdots & \vdots & \vdots \\
31 & 11111 & 1 \\
\end{array}
\]

For example, the last two bits flip when the counter goes from 1 to 2. Using \(\Theta(\cdot) \) notation, find the growth of the total number of bit flips (the sum of all the numbers in the “# Bit-Flips” column) as a function of \(n \).
3 Asymptotic Bound Practice

Prove that for any $\epsilon > 0$ we have $\log x \in O(x^\epsilon)$.

4 Hadamard matrices

The Hadamard matrices H_0, H_1, H_2, \ldots are defined as follows:

- H_0 is the 1×1 matrix $[1]$
- For $k > 0$, H_k is the $2^k \times 2^k$ matrix

\[
H_k = \begin{bmatrix}
H_{k-1} & H_{k-1} \\
H_{k-1} & -H_{k-1}
\end{bmatrix}
\]

(a) Write down the Hadamard matrices H_0, H_1, and H_2.

(b) Compute the matrix-vector product $H_2 \cdot v$ where H_2 is the Hadamard matrix you found above, and

\[
v = \begin{bmatrix}
1 \\
-1 \\
-1 \\
1
\end{bmatrix}
\]

Note that since H_2 is a 4×4 matrix, and the vector has length 4, the result will be a vector of length 4.

(c) Now, we will compute another quantity. Take v_1 and v_2 to be the top and bottom halves of v respectively. Therefore, we have that

\[
v_1 = \begin{bmatrix}
1 \\
-1
\end{bmatrix}, v_2 = \begin{bmatrix}
-1 \\
1
\end{bmatrix}, v = \begin{bmatrix}
v_1 \\
v_2
\end{bmatrix}
\]

Compute $u_1 = H_1(v_1 + v_2)$ and $u_2 = H_1(v_1 - v_2)$ to get two vectors of length 2. Stack u_1 above u_2 to get a vector u of length 4. What do you notice about u?

(d) Suppose that

\[
v = \begin{bmatrix}
v_1 \\
v_2
\end{bmatrix}
\]

is a column vector of length $n = 2^k$. v_1 and v_2 are the top and bottom half of the vector, respectively. Therefore, they are each vectors of length $\frac{n}{2} = 2^{k-1}$. Write the matrix-vector product H_kv in terms of H_{k-1}, v_1, and v_2 (note that H_{k-1} is a matrix of dimension $\frac{n}{2} \times \frac{n}{2}$, or $2^{k-1} \times 2^{k-1}$). Since H_k is a $n \times n$ matrix, and v is a vector of length n, the result will be a vector of length n.

(e) Use your results from (c) to come up with a divide-and-conquer algorithm to calculate the matrix-vector product H_kv, and show that it can be calculated using $O(n \log n)$ operations. Assume that all the numbers involved are small enough that basic arithmetic operations like addition and multiplication take unit time. You do not need to prove correctness.

5 Extra Divide and Conquer Practice: Sorted Array

Given a sorted array A of n (possibly negative) distinct integers, you want to find out whether there is an index i for which $A[i] = i$. Devise a divide-and-conquer algorithm that runs in $O(\log n)$ time.