Note: Your TA probably will not cover all the problems. This is totally fine, the discussion worksheets are deliberately made long so they can serve as a resource you can use to practice, reinforce, and build upon concepts discussed in lecture, readings, and the homework.

1 Asymptotics and Limits

If we would like to prove asymptotic relations instead of just using them, we can use limits.

Asymptotic Limit Rules: If $f(n), g(n) \ge 0$: • If $\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$, then $f(n) = \mathcal{O}(g(n))$. • If $\lim_{n \to \infty} \frac{f(n)}{g(n)} = c$, for some c > 0, then $f(n) = \Theta(g(n))$. • If $\lim_{n \to \infty} \frac{f(n)}{g(n)} > 0$, then $f(n) = \Omega(g(n))$.

Note that these are all sufficient (and not necessary) conditions involving limits, and are not true definitions of \mathcal{O} , Θ , and Ω . We highly recommend checking on your own that these statements are correct!)

(a) Prove that
$$n^3 = \mathcal{O}(n^4)$$
.

(b) Find an $f(n), g(n) \ge 0$ such that $f(n) = \mathcal{O}(g(n))$, yet $\lim_{n \to \infty} \frac{f(n)}{g(n)} \ne 0$.

(c) Prove that for any c > 0, we have $\log n = \mathcal{O}(n^c)$. *Hint:* Use L'Hôpital's rule: If $\lim_{n \to \infty} f(n) = \lim_{n \to \infty} g(n) = \infty$, then $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$ (if the RHS exists) (d) Find an $f(n), g(n) \ge 0$ such that $f(n) = \mathcal{O}(g(n))$, yet $\lim_{n \to \infty} \frac{f(n)}{g(n)}$ does not exist. In this case, you would be unable to use limits to prove $f(n) = \mathcal{O}(g(n))$. Hint: think about oscillating functions!

2 Asymptotic Complexity Comparisons

- (a) Order the following functions so that for all i, j, if f_i comes before f_j in the order then $f_i = O(f_j)$. Do not justify your answers.
 - $f_1(n) = 3^n$
 - $f_2(n) = n^{\frac{1}{3}}$
 - $f_3(n) = 12$
 - $f_4(n) = 2^{\log_2 n}$
 - $f_5(n) = \sqrt{n}$
 - $f_6(n) = 2^n$
 - $f_7(n) = \log_2 n$
 - $f_8(n) = 2^{\sqrt{n}}$
 - $f_9(n) = n^3$

As an answer you may just write the functions as a list, e.g. f_8, f_9, f_1, \ldots

(b) In each of the following, indicate whether f = O(g), $f = \Omega(g)$, or both (in which case $f = \Theta(g)$). **Briefly** justify each of your answers. Recall that in terms of asymptotic growth rate, constant < logarithmic < polynomial < exponential.

	f(n)	g(n)
(i)	$\log_3 n$	$\log_4(n)$
(ii)	$n\log(n^4)$	$n^2 \log(n^3)$
(iii)	\sqrt{n}	$(\log n)^3$
(iv)	$n + \log n$	$n + (\log n)^2$

3 Recurrence Relations

Solve the following recurrence relations, assuming base cases T(0) = T(1) = 1:

(a)
$$T(n) = 2 \cdot T(n/2) + O(n)$$

(b)
$$T(n) = T(n-1) + n$$

(c) $T(n) = 3 \cdot T(n-2) + 5$

This content is protected and may not be shared, uploaded, or distributed.

(d) $T(n) = 2 \cdot T(n/2) + O(n \log n)$

(e)
$$T(n) = 3T(n^{1/3}) + O(\log n)$$

(f) T(n) = T(n-1) + T(n-2)