We will use ω_1 to denote the first n-th root of unity $\omega_n = \omega^{2\pi i/n}$. The most important fact about roots of unity for our purposes is that the squares of the $2n$-th roots of unity *are* the n-th roots of unity.

Fast Fourier Transform

The *Fast Fourier Transform* $\text{FFT}(p, n)$ takes arguments n, some power of 2, and p is some vector $[p_0, p_1, \ldots, p_{n-1}]$.

Treating p as a polynomial $P(x) = p_0 + p_1x + \ldots + p_{n-1}x^{n-1}$, the FFT computes the following matrix multiplication in $O(n \log n)$ time:

$$
\begin{bmatrix}
P(1) \\
P(\omega_n) \\
P(\omega_n^2) \\
\vdots \\
P(\omega_n^{n-1})
\end{bmatrix} =
\begin{bmatrix}
1 & 1 & 1 & \ldots & 1 \\
1 & \omega_n^1 & \omega_n^2 & \ldots & \omega_n^{(n-1)} \\
1 & \omega_n^2 & \omega_n^4 & \ldots & \omega_n^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega_n^{(n-1)} & \omega_n^{2(n-1)} & \ldots & \omega_n^{(n-1)(n-1)}
\end{bmatrix}
\begin{bmatrix}
p_0 \\
p_1 \\
p_2 \\
\vdots \\
p_{n-1}
\end{bmatrix}
$$

If we let $E(x) = p_0 + p_1x + \ldots + p_{n-1}x^{n-1}$ and $O(x) = p_1 + p_3x + \ldots + p_{n-1}x^{n-2}$, then $P(x) = E(x^2) + O(x^2)$, and then $\text{FFT}(p, n)$ can be expressed as a divide-and-conquer algorithm:

1. Compute $E' = \text{FFT}(E, n/2)$ and $O' = \text{FFT}(O, n/2)$.
2. For $i = 0 \ldots n-1$, assign $P(\omega_i^i) \leftarrow E((\omega_i^i)^2) + \omega_n^i O((\omega_i^i)^2)$

(a) Let $p = [p_0]$. What is $\text{FFT}(p, 1)$?

Solution: Notice the FFT matrix is just [1], so $\text{FFT}(p, 1) = [p_0]$.

(b) Use the FFT algorithm to compute $\text{FFT}([1, 4], 2)$ and $\text{FFT}([3, 2], 2)$.

Solution: $\text{FFT}([1, 4], 2) = [5, -3]$ and $\text{FFT}([3, 2], 2) = [5, 1]$.

We show how to compute $\text{FFT}([1, 4], 2)$, and $\text{FFT}([3, 2], 2)$ is similar.

First we compute $\text{FFT}([1, 1]) = [1] = E'$ and $\text{FFT}([4, 1]) = [4] = O'$ by part (a). Notice that $E' = [E(1)] = 1$ and $O' = [O(1)] = [4]$, so when we need to use these values later they have already been computed in E' and O'.

Let P be our result. We wish to compute $P(\omega_2^0) = P(1)$ and $P(\omega_2^2) = P(-1)$.

$$
P(1) = E(1) + 1 \cdot O(1) = 1 + 4 = 5 \\
P(-1) = E(1) - 1 \cdot O(1) = 1 - 4 = -3
$$

So our answer is $[5, -3]$.

(c) Use your answers to the previous parts to compute $\text{FFT}([1, 3, 4, 2], 4)$.

Solution: $\omega_4 = i$. The following table is good to keep handy:
(b) Let \(P(x) = x^3 \) and \(Q(x) = x^2 \). Describe how to multiply two polynomials \(p(x) \) and \(q(x) \) in coefficient form of degree at most \(d \).

Solution: The idea is to take the FFT of both \(p(x) \) and \(q(x) \), multiply the evaluations, and then take the inverse FFT. Note that \(p \cdot q \) has degree at most \(2d \), which means we need to pick \(n \) as the smallest power of 2 greater than \(2d \), call this \(2^k \). We can zero-pad both polynomials so they have degree \(2^k - 1 \).

Then \(M = \text{FFT}(p, 2^k) \cdot \text{FFT}(q, 2^k) \) (with multiplication elementwise) computes \(pq(\omega_{2^k}^i) \) for all \(i = 0, \ldots, 2^k - 1 \).

We take the inverse FFT of \(M \) to get back to \(p \cdot q \) in coefficient form.

2 Cubed Fourier

(a) Cubing the \(9^{th} \) roots of unity gives the \(3^{rd} \) roots of unity. Next to each of the third roots below, write down the corresponding \(9^{th} \) roots which cube to it. The first has been filled for you. We will use \(\omega_9 \) to represent the primitive \(9^{th} \) root of unity, and \(\omega_3 \) to represent the primitive \(3^{rd} \) root.

\[
\begin{array}{cccc}
\omega_4^0 & \omega_9^0 & 1 & i \\
\omega_4^1 & \omega_9^1 & -1 & \omega_4^i \\
\end{array}
\]

Let \(E' = \text{FFT}([1, 4], 2) = [5, -3] \) and \(O' = \text{FFT}([3, 2], 2) = [5, 1] \). Notice that \(E' = [E(1), E(-1)] = [5, -3] \) and \(O' = [O(1), O(-1)] = [5, 1] \), so when we need to use these values later they have already been computed in the divide step. Let \(R \) be our result, we wish to compute \(R(1), R(i), R(-1), R(-i) \).

\[
\begin{align*}
R(1) &= E(1) + 1 \cdot O(1) = 5 + 5 = 10 \\
R(i) &= E(-1) + i \cdot O(-1) = -3 + i \\
R(-1) &= E(1) - 1 \cdot O(1) = 5 - 5 = 0 \\
R(-i) &= E(-1) - i \cdot O(-1) = -3 - i \\
\end{align*}
\]

So our answer \([10, -3 + i, 0, -3 - i]\).

(b) You want to run FFT on a degree-8 polynomial, but you don’t like having to pad it with 0s to make the (degree+1) a power of 2. Instead, you realize that 9 is a power of 3, and you decide to work directly with 9th roots of unity and use the fact proven in part (a). Say that your polynomial looks like \(P(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_8 x^8 \). Describe a way to split \(P(x) \) into three pieces so that you can make an FFT-like divide-and-conquer algorithm.

Solution:

(a) \(\omega_3^0 : \omega_9^0, \omega_3^1, \omega_9^0 \)

\[\omega_3^0 : \omega_9^0, \omega_3^0, \omega_9^0 \]

\[\omega_3^2 : \omega_9^0, \omega_3^1, \omega_9^0 \]

(b) Let \(P(x) = P_1(x^3) + xP_2(x^3) + x^2P_3(x^3) \)

where \(P_1(x^3) = a_0 + a_3 x^3 + a_6 x^6 \),

and \(P_2(x^3) = a_1 + a_4 x^3 + a_7 x^6 \),

and \(P_3(x^3) = a_2 + a_5 x^3 + a_8 x^6 \).
3 Predicting a Weighted Average

You have a time-series dataset \(y_0, y_1, \ldots, y_{n-1}\) where all \(y_i \in \mathbb{R}\). You are given fixed coefficients \(c_0, \ldots, c_{n-2}\), which give the following prediction for day \(t \geq 1\):

\[
p_t = \sum_{k=0}^{t-1} c_k y_{t-1-k}
\]

You would like to evaluate the accuracy of this prediction on the dataset by computing the mean squared error, given by

\[
\frac{1}{n-1} \sum_{t=1}^{n-1} (p_t - y_t)^2
\]

Find an \(O(n \log n)\) time algorithm to compute the mean squared error, given dataset \(y_0, y_1, \ldots, y_{n-1}\) and coefficients \(c_0, \ldots, c_{n-2}\).

Hint: Recall that if \(p(x) = p_0 + p_1 x + p_2 x^2 + \ldots + p_{n-1} x^{n-1}\) and \(q(x) = q_0 + q_1 x + q_2 x^2 + \ldots + q_{n-1} x^{n-1}\), then their product is \(p(x) \cdot q(x) = r(x) = r_0 + r_1 x + \ldots + r_{2n-2} x^{2n-2}\), where

\[
r_j = \sum_{k=0}^{j} p_k q_{j-k}
\]

Solution:
To compute the mean-squared-error, the main thing we need to focus on is computing all of the \(p_t\)s. Once they have been computed, the MSE just takes time \(O(n)\) time to compute.

Create polynomials \(p(x) = c_0 + c_1 x + \ldots + c_{n-2} x^{n-2}\) and \(q(x) = 0 + y_0 x + y_1 x^2 + \ldots + y_{n-1} x^n\), and compute their product \(r = p \cdot q\) using FFT-based multiplication in \(O(n \log n)\) time. Notice that if we shifted all the coefficients in \(q\) by one place, so that the prediction on the \(t\)th day can only use the stock prices until the \(t - 1\)st day.

Then notice that

\[
r_t = \sum_{k=0}^{t} c_k q_{t-k} = \sum_{k=0}^{t-1} c_k y_{t-1-k}
\]

So the coefficients \(r_1, \ldots, r_n\) correspond to the predictions \(p_1, \ldots, p_n\).

4 Extra Divide and Conquer Practice: Sorted Array

Given a sorted array \(A\) of \(n\) (possibly negative) distinct integers, you want to find out whether there is an index \(i\) for which \(A[i] = i\). Devise a divide-and-conquer algorithm that runs in \(O(\log n)\) time.

Solution:
Along the same lines as binary search, start by examining \(A[\frac{n}{2}]\). There are three cases for this particular index; \(A[\frac{n}{2}] = \frac{n}{2}\), \(A[\frac{n}{2}] > \frac{n}{2}\), and \(A[\frac{n}{2}] < \frac{n}{2}\).

If \(A[\frac{n}{2}] = \frac{n}{2}\), then we have a satisfactory index so we can return true.

If \(A[\frac{n}{2}] > \frac{n}{2}\), then no element in the second half of the array can possibly satisfy the condition because each integer is at least one greater than the previous integer (because of the distinct property), and hence the difference of \(A[\frac{n}{2}] - \frac{n}{2}\) cannot decrease by continuing through the array. If \(A[\frac{n}{2}] < \frac{n}{2}\), then by the same logic no element in the first half of the array can satisfy the condition.

While the algorithm has not terminated, we discard the half of the array that cannot hold an answer, and recurse on the other half applying the same check on the new array’s median. If we are left with an empty array, we return false.
At each step we do a single comparison and discard at least half of the remaining array (or terminate), so this algorithm takes $O(\log n)$ time.

5 Extra Divide and Conquer Practice: Quantiles

Let A be an array of length n. The boundaries for the k quantiles of A are \{${a^{(n/k)}, a^{(2n/k)}, \ldots, a^{((k-1)n/k)}$\} where $a^{(\ell)}$ is the ℓ-th smallest element in A.

Devise an algorithm to compute the boundaries of the k quantiles in time $O(n \log k)$. For convenience, you may assume that k is a power of 2.

Hint: Recall that $\text{Quickselect}(A, \ell)$ gives $a^{(\ell)}$ in $O(n)$ time.

Solution: The idea is to find the median of A, partition it into two pieces around this median. Then we recursively find the medians of the two partitions, partition those further, and so on. If we do this $\log k$ times, we will have found all of the k-quantiles.

Finding the median and partitioning A takes $O(n)$ time. We also do this for two arrays of size $n/2$, four times for arrays of size $n/4$, etc. So the total time taken is

$$O(n + 2 \cdot n/2 + 4 \cdot n/4 + \cdots + 2^{\log k} n/2^{\log k}) = O(n + n + \cdots + n) = O(n \log k)$$