1 FFT Intro

We will use ω_n to denote the first n-th root of unity $\omega_n = e^{2\pi i/n}$. The most important fact about roots of unity for our purposes is that the squares of the $2n$-th roots of unity are the n-th roots of unity.

Fast Fourier Transform! The Fast Fourier Transform FFT(p, n) takes arguments n, some power of 2, and p is some vector $[p_0, p_1, \ldots, p_{n-1}]$.

Treating p as a polynomial $P(x) = p_0 + p_1 x + \ldots + p_{n-1} x^{n-1}$, the FFT computes the following matrix multiplication in $O(n \log n)$ time:

$$
\begin{bmatrix}
P(1) \\
P(\omega_n) \\
P(\omega_n^2) \\
\vdots \\
P(\omega_n^{n-1})
\end{bmatrix} =
\begin{bmatrix}
1 & 1 & 1 & \ldots & 1 \\
1 & \omega_n^1 & \omega_n^2 & \ldots & \omega_n^{n-1} \\
1 & \omega_n^2 & \omega_n^4 & \ldots & \omega_n^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega_n^{n-1} & \omega_n^{2(n-1)} & \ldots & \omega_n^{(n-1)(n-1)}
\end{bmatrix}
\cdot
\begin{bmatrix}
p_0 \\
p_1 \\
p_2 \\
\vdots \\
p_{n-1}
\end{bmatrix}
$$

If we let $E(x) = p_0 + p_2 x + \ldots + p_{n-2} x^{n/2-1}$ and $O(x) = p_1 + p_3 x + \ldots + p_{n-1} x^{n/2-1}$, then $P(x) = E(x^2) + xO(x^2)$, and then FFT(p, n) can be expressed as a divide-and-conquer algorithm:

1. Compute $E' = FFT(E, n/2)$ and $O' = FFT(O, n/2)$.
2. For $i = 0 \ldots n-1$, assign $P(\omega_n^i) \leftarrow E((\omega_n^i)^2) + \omega_n^i O((\omega_n^i)^2)$

(a) Let $p = [p_0]$. What is FFT$(p, 1)$?

(b) Use the FFT algorithm to compute FFT$([1, 4], 2)$ and FFT$([3, 2], 2)$.

(c) Use your answers to the previous parts to compute FFT$([1, 3, 4, 2], 4)$.
(d) Describe how to multiply two polynomials \(p(x), q(x) \) in coefficient form of degree at most \(d \).

2 Cubed Fourier

(a) Cubing the 9\(^{th}\) roots of unity gives the 3\(^{rd}\) roots of unity. Next to each of the third roots below, write down the corresponding 9\(^{th}\) roots which cube to it. The first has been filled for you. We will use \(\omega_9 \) to represent the primitive 9\(^{th}\) root of unity, and \(\omega_3 \) to represent the primitive 3\(^{rd}\) root.

\[
\begin{align*}
\omega_3^0 & : \omega_9^0, \\
\omega_3^1 & : , , \\
\omega_3^2 & : , ,
\end{align*}
\]

(b) You want to run FFT on a degree-8 polynomial, but you don’t like having to pad it with 0s to make the (degree+1) a power of 2. Instead, you realize that 9 is a power of 3, and you decide to work directly with 9\(^{th}\) roots of unity and use the fact proven in part (a). Say that your polynomial looks like \(P(x) = a_0 + a_1x + a_2x^2 + \ldots + a_8x^8 \). Describe a way to split \(P(x) \) into three pieces so that you can make an FFT-like divide-and-conquer algorithm.

3 Predicting a Weighted Average

You have a time-series dataset \(y_0, y_1, \ldots, y_{n-1} \) where all \(y_t \in \mathbb{R} \). You are given fixed coefficients \(c_0, \ldots, c_{n-2} \), which give the following prediction for day \(t \geq 1 \):

\[
p_t = \sum_{k=0}^{t-1} c_k y_{t-1-k}
\]

You would like to evaluate the accuracy of this prediction on the dataset by computing the mean squared error, given by

\[
\frac{1}{n-1} \sum_{t=1}^{n-1} (p_t - y_t)^2
\]

Find an \(O(n \log n) \) time algorithm to compute the mean squared error, given dataset \(y_0, y_1, \ldots, y_{n-1} \) and coefficients \(c_0, \ldots, c_{n-2} \).

Hint: Recall that if \(p(x) = p_0 + p_1x + p_2x^2 + \ldots + p_{n-1}x^{n-1} \) and \(q(x) = q_0 + q_1x + q_2x^2 + \ldots + q_{n-1}x^{n-1} \), then their product is \(p(x) \cdot q(x) = r(x) = r_0 + r_1x + \ldots + r_{2n-2}x^{2n-2} \), where

\[
r_j = \sum_{k=0}^{j} p_k q_{j-k}
\]
4 Extra Divide and Conquer Practice: Sorted Array

Given a sorted array \(A \) of \(n \) (possibly negative) distinct integers, you want to find out whether there is an index \(i \) for which \(A[i] = i \). Devise a divide-and-conquer algorithm that runs in \(O(\log n) \) time.

5 Extra Divide and Conquer Practice: Quantiles

Let \(A \) be an array of length \(n \). The boundaries for the \(k \) quantiles of \(A \) are \(\{a^{(n/k)}, a^{(2n/k)}, \ldots, a^{((k-1)n/k)}\} \) where \(a^{(\ell)} \) is the \(\ell \)-th smallest element in \(A \).

Devise an algorithm to compute the boundaries of the \(k \) quantiles in time \(O(n \log k) \). For convenience, you may assume that \(k \) is a power of 2.

Hint: Recall that \(\text{QUICKSELECT}(A, \ell) \) gives \(a^{(\ell)} \) in \(O(n) \) time.