Note: Your TA may not get to all the problems. This is totally fine, the discussion worksheets are not designed to be finished in an hour. The discussion worksheet is also a resource you can use to practice, reinforce, and build upon concepts discussed in lecture, readings, and the homework.

1 Short Answer

For each of the following, either prove the statement is true or give a counterexample to show it is false.

(a) If \((u, v)\) is an edge in an undirected graph and during DFS, \(\text{post}(v) < \text{post}(u)\), then \(u\) is an ancestor of \(v\) in the DFS tree.

(b) In a directed graph, if there is a path from \(u\) to \(v\) and \(\text{pre}(u) < \text{pre}(v)\) then \(u\) is an ancestor of \(v\) in the DFS tree.

(c) In any connected undirected graph \(G\) there is a vertex whose removal leaves \(G\) connected.
2 Graph Traversal

(a) Recall that given a DFS tree, we can classify edges into one of four types:

- Tree edges are edges in the DFS tree,
- Back edges are edges \((u, v)\) not in the DFS tree where \(v\) is the ancestor of \(u\) in the DFS tree
- Forward edges are edges \((u, v)\) not in the DFS tree where \(u\) is the ancestor of \(v\) in the DFS tree
- Cross edges are edges \((u, v)\) not in the DFS tree where \(u\) is not the ancestor of \(v\), nor is \(v\) the ancestor of \(u\).

For the directed graph above, perform DFS starting from vertex \(A\), breaking ties alphabetically. As you go, label each node with its pre- and post-number, and mark each edge as Tree, Back, Forward or Cross.

(b) What are the strongly connected components of the above graph?
(c) Draw the DAG of the strongly connected components of the graph.

3 Finding Clusters

We are given a directed graph $G = (V, E)$, where $V = \{1, \ldots, n\}$, i.e. the vertices are integers in the range 1 to n. For every vertex i we would like to compute the value $m(i)$ defined as follows: $m(i)$ is the smallest j such from which you can reach vertex i. (As a convention, we assume that i is reachable from i.)

(a) Show that the values $m(1), \ldots, m(n)$ can be computed in $O(|V| + |E|)$ time.

(b) Suppose we instead define $m(i)$ to be the smallest j that can be reached from i, instead of the smallest j from which you can reach i. How should you modify your answer to part (a) to work in this case?
4 BFS Intro

In this problem we will consider the shortest path problem: Given a graph $G(V, E)$, find the length of the shortest path from s to every vertex v in V. For an unweighted graph, the length of a path is the number of edges in the path. We can do this using the breadth-first search (BFS) algorithm, which we will see again in lecture this week.

BFS can be implemented just like the depth-first search (DFS) algorithm, but using a queue instead of a stack. Below is pseudo-code for another implementation of BFS, which computes for each $i \in \{0, 1, \ldots, n-1\}$ the set of vertices distance i from s, denoted L_i.

1: **Input:** A graph $G(V, E)$, starting vertex s
2: for all $v \in V$ do
3: \hspace{10pt} $visited(v) = False$
4: \hspace{10pt} $visited(s) = True$
5: \hspace{10pt} $L_0 = \{s\}$
6: for i from 0 to $n-1$ do
7: \hspace{10pt} $L_{i+1} = \{\}$
8: \hspace{10pt} for $u \in L_i$ do
9: \hspace{10pt} \hspace{10pt} for $(u, v) \in E$ do
10: \hspace{10pt} \hspace{10pt} \hspace{10pt} if $visited(v) = False$ then
11: \hspace{10pt} \hspace{10pt} \hspace{10pt} \hspace{10pt} $L_{i+1}.add(v)$
12: \hspace{10pt} \hspace{10pt} \hspace{10pt} $visited(v) = True$

In other words, we start with $L_0 = \{s\}$, and then for each i, we set L_{i+1} to be all neighbors of vertices in L_i that we haven’t already added to a previous L_i.

(a) Prove that BFS computes the correct value of L_i for all i (Hint: Use induction to show that for all i, L_i contains all vertices distance i from s, and only contains these vertices).

(b) Show that just like DFS, the above algorithm runs in $O(m + n)$ time.

(c) We might instead want to find the shortest weighted path from s to each vertex. That is, each edge has weight w_e, and the length of a path is now the sum of weights of edges in the path. The above algorithm works when all $w_e = 1$, but can easily fail if some $w_e \neq 1$.

Fill in the blank to get an algorithm computing the shortest paths when w_e are integers: We replace each edge e in G with _____ to get a new graph G', then run BFS on G' starting from s. Justify your answer.
(d) What is the runtime of this algorithm as a function of the weights w_e? How many bits does it take to write down all w_e? Is this algorithm’s runtime a polynomial in the input size?