Note: Your TA may not get to all the problems. This is totally fine, the discussion worksheets are not designed to be finished in an hour. The discussion worksheet is also a resource you can use to practice, reinforce, and build upon concepts discussed in lecture, readings, and the homework.

1 Midterm Prep: Divide and Conquer

Given a set of points \(P = \{(x_1, y_1), (x_2, y_2) \ldots (x_n, y_n)\} \), a point \((x_i, y_i) \in P\) is Pareto-optimal if there does not exist any \(j \neq i \) such that such that \(x_j > x_i \) and \(y_j > y_i \). In other words, there is no point in \(P \) above and to the right of \((x_i, y_i)\). Design a \(O(n \log n) \)-time divide-and-conquer algorithm that given \(P \), outputs all Pareto-optimal points in \(P \).

(Hint: Split the array by \(x \)-coordinate. Show that all points returned by one of the two recursive calls is Pareto-optimal, and that you can get rid of all non-Pareto-optimal points in the other recursive call in linear time).

Solution: Let \(L \) be the left half of the points when sorted by \(x \)-coordinate, and \(R \) be the right half. Recurse on \(L \) and \(R \), let \(L', R' \) be the sets of Pareto-optimal points returned. Every point in \(R' \) is Pareto-optimal, since all points in \(L \) have smaller \(x \)-coordinates and can’t violate Pareto-optimality of points in \(R' \). For each point in \(L' \), it’s Pareto-optimal iff its \(y \)-coordinate is larger than \(y_{\text{max}} \), the largest \(y \)-coordinate in \(R \). We can compute \(y_{\text{max}} \) in a linear scan, and then remove all points in \(L' \) with a smaller \(y \)-coordinate. We then return the union of \(L', R' \).

This runs in \(T(n) = 2T(n/2) + O(n) = O(n \log n) \) time.

2 Midterm Prep: FFT

(a) Cubing the 9\(^{th}\) roots of unity gives the 3\(^{rd}\) roots of unity. Next to each of the third roots below, write down the corresponding 9\(^{th}\) roots which cube to it. The first has been filled for you. We will use \(\omega_9 \) to represent the primitive 9\(^{th}\) root of unity, and \(\omega_3 \) to represent the primitive 3\(^{rd}\) root.

\[
\begin{align*}
\omega_3^0 : \omega_9^0, & \quad , \\
\omega_3^1 : \omega_9^3, & \quad , \\
\omega_3^2 : \omega_9^6, & \quad ,
\end{align*}
\]

(b) You want to run FFT on a degree-8 polynomial, but you don’t like having to pad it with 0s to make the (degree+1) a power of 2. Instead, you realize that 9 is a power of 3, and you decide to work directly with 9th roots of unity and use the fact proven in part (a). Say that your polynomial looks like \(P(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_8 x^8 \). Describe a way to split \(P(x) \) into three pieces (instead of two) so that you can make an FFT-like divide-and-conquer algorithm.

(c) What is the runtime of FFT when we divide the polynomial into three pieces instead of two?

Solution:

(a) \(\omega_9^0 : \omega_9^0, \omega_9^3, \omega_9^6 \)
\[
\begin{align*}
\omega_3^0 : \omega_9^0, & \quad , \\
\omega_3^1 : \omega_9^3, & \quad , \\
\omega_3^2 : \omega_9^6, & \quad ,
\end{align*}
\]

(b) Let \(P(x) = P_1(x^3) + xP_2(x^3) + x^2P_3(x^3) \)
where \(P_1(x^3) = a_0 + a_3 x + a_6 x^6 \).
and \(P_2(x^3) = a_1 + a_4 x + a_7 x^6. \)
and \(P_3(x^3) = a_2 + a_5 x + a_8 x^6. \)
(c) We have the recurrence $T(n) = 3*T(n/3) + O(n) = O(n \log n)$. So splitting up FFT into three pieces instead of two doesn’t affect the runtime asymptotically.

3 Midterm Prep: DFS

Suppose we just ran DFS on a directed (not necessarily strongly connected) graph G starting from vertex r, and have the pre-visit and post-visit numbers $pre(v), post(v)$ for every vertex. We now delete vertex r and all edges adjacent to it to get a new graph G'. Given just the arrays $pre(v), post(v)$, describe how to modify them to arrive at new arrays $pre'(v), post'(v)$ such that $pre'(v), post'(v)$ are a valid pre-visit and post-visit ordering for some DFS of G'.

Solution: For all v such that $pre(r) < pre(v) < post(v) < post(r)$, set $pre'(v) = pre(v) - 1, post'(v) = post(v) - 1$. For all other v in G', $pre'(v) = pre(v) - 2, post'(v) = post(v) - 2$.

One valid DFS on G' is: Run DFS, whenever we need to pick a new vertex to explore from, choose the unvisited vertex with the smallest value of $pre(v)$. This will visit all vertices in G' in the same order as the DFS on G. For example, notice that vertices adjacent to r have lower previsit numbers than vertices that can’t be reached from r. So this DFS on G' will explore the vertices reachable from r in G first, and then vertices not reachable from r, just like the DFS on G.

For vertices with $pre(r) < pre(v) < post(v) < post(r)$, their pre/post-visit number decreases by 1 in this DFS since we no long pre-visit r before them. For all other vertices, their pre/post-visit number decreases by 2 since we no long pre-visit or post-visit r before them.

4 Midterm Prep: Shortest Paths

You are given a strongly connected directed graph $G = (V,E)$ with positive edge weights, and there is a special node $v_0 \in V$. Give an efficient algorithm that computes the length of the shortest path from s to t that passes through v_0 for all pairs s,t. Your algorithm should take $O(|V|^2 + |E| \log |V|)$ time.

Solution: The length of the shortest path from s to t that passes through v_0 is the same as the length of the shortest path from s to v_0 plus the length of the shortest path from v_0 to t.

We compute the shortest path length from v_0 to all vertices t using Dijkstra’s. Next, we reverse all edges in G, to get G^R, and then compute the shortest path length from v_0 to all vertices in G^R. The shortest path length from v_0 to s in G^R is the same as the shortest path length from s to v_0 in G. These calls to Dijkstra’s take $O(|V| + |E| \log |V|)$ time.

Now, we can combine the results of the two calls to Dijkstra’s to write down the output in $O(|V|^2)$ time.