1 Midterm Prep: Divide and Conquer

Given a set of points \(P = \{(x_1, y_1), (x_2, y_2), \ldots (x_n, y_n)\} \), a point \((x_i, y_i) \in P\) is Pareto-optimal if there does not exist any \(j \neq i \) such that such that \(x_j > x_i \) and \(y_j > y_i \). In other words, there is no point in \(P \) above and to the right of \((x_i, y_i)\). Design a \(O(n \log n) \)-time divide-and-conquer algorithm that given \(P \), outputs all Pareto-optimal points in \(P \).

(Hint: Split the array by \(x \)-coordinate. Show that all points returned by one of the two recursive calls is Pareto-optimal, and that you can get rid of all non-Pareto-optimal points in the other recursive call in linear time).

2 Midterm Prep: FFT

(a) Cubing the 9th roots of unity gives the 3rd roots of unity. Next to each of the third roots below, write down the corresponding 9th roots which cube to it. The first has been filled for you. We will use \(\omega_9 \) to represent the primitive 9th root of unity, and \(\omega_3 \) to represent the primitive 3rd root.

\[
\begin{align*}
\omega_0^0 & : \omega_9^0, \\
\omega_1^1 & : , \\
\omega_2^2 & : ,
\end{align*}
\]

(b) You want to run FFT on a degree-8 polynomial, but you don’t like having to pad it with 0s to make the (degree+1) a power of 2. Instead, you realize that 9 is a power of 3, and you decide to work directly with 9th roots of unity and use the fact proven in part (a). Say that your polynomial looks like \(P(x) = a_0 + a_1x + a_2x^2 + \ldots + a_8x^8 \). Describe a way to split \(P(x) \) into three pieces (instead of two) so that you can make an FFT-like divide-and-conquer algorithm.

(c) What is the runtime of FFT when we divide the polynomial into three pieces instead of two?
3 Midterm Prep: DFS

Suppose we just ran DFS on a directed (not necessarily strongly connected) graph G starting from vertex r, and have the pre-visit and post-visit numbers $\text{pre}(v), \text{post}(v)$ for every vertex. We now delete vertex r and all edges adjacent to it to get a new graph G'. Given just the arrays $\text{pre}(v), \text{post}(v)$, describe how to modify them to arrive at new arrays $\text{pre}'(v), \text{post}'(v)$ such that $\text{pre}'(v), \text{post}'(v)$ are a valid pre-visit and post-visit ordering for some DFS of G'.

4 Midterm Prep: Shortest Paths

You are given a strongly connected directed graph $G = (V, E)$ with positive edge weights, and there is a special node $v_0 \in V$. Give an efficient algorithm that computes the length of the shortest path from s to t that passes through v_0 for all pairs s, t. Your algorithm should take $O(|V|^2 + |E| \log |V|)$ time.