1 Taking a Dual

Consider the following linear program:

\[
\begin{align*}
\text{max } & \quad 4x_1 + 7x_2 \\
& \quad x_1 + 2x_2 \leq 10 \\
& \quad 3x_1 + x_2 \leq 14 \\
& \quad 2x_1 + 3x_2 \leq 11 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]

Construct the dual of the above linear program.
2 Max Flow, Min Cut, and Duality

In this exercise, we will demonstrate that LP duality can be used to show the max-flow min-cut theorem.

Consider this instance of max flow:

![Graph Diagram]

Let f_1 be the flow pushed on the path $\{S, A, T\}$, f_2 be the flow pushed on the path $\{S, A, B, T\}$, and f_3 be the flow pushed on the path $\{S, B, T\}$. The following is an LP for max flow in terms of the variables f_1, f_2, f_3:

\[
\begin{align*}
\text{max} & \quad f_1 + f_2 + f_3 \\
& \quad f_1 + f_2 \leq 7 \quad \text{(Constraint for (S, A))} \\
& \quad f_3 \leq 5 \quad \text{(Constraint for (S, B))} \\
& \quad f_1 \leq 4 \quad \text{(Constraint for (A, T))} \\
& \quad f_2 \leq 4 \quad \text{(Constraint for (A, B))} \\
& \quad f_2 + f_3 \leq 7 \quad \text{(Constraint for (B, T))} \\
& \quad f_1, f_2, f_3 \geq 0
\end{align*}
\]

The objective is to maximize the flow being pushed, with the constraint that for every edge, we can’t push more flow through that edge than its capacity allows.

(a) Find the dual of this linear program, where the variables in the dual are x_e for every edge e in the graph.

(b) Consider any cut in the graph. Show that setting $x_e = 1$ for every edge crossing this cut and $x_e = 0$ for every edge not crossing this cut gives a feasible solution to the dual program.

(c) Based on your answer to the previous part, what problem is being modelled by the dual program? By LP duality, what can you argue about this problem and the max flow problem?
3 Dual of Maximum Independent Set

You are given a connected undirected graph $G = (V, E)$ where $|V| > 2$. Recall that a set of vertices $S \subseteq V$ is an independent set if there do not exist $u, v \in S$ such that there is an edge between u and v. In addition, an edge cover is a set of edges $C \subseteq E$ such that for each vertex v, there is some edge in C that it is incident to (so the edges in C ‘cover’ all the vertices).

(a) In the maximum independent set problem, you want to find an independent set of maximum size. Write the integer linear program (ILP) for the relaxed version of maximum independent set (that is, you may have the constraint $x \in \{0, 1\}$).

(b) Take your ILP, and replace the constraints of the form $x \in \{0, 1\}$ with $x \geq 0$ to get a linear program (LP). Then find the dual LP of this LP. What problem does the dual represent?

(c) True or false: For any connected graph, the optimum value for the (non-integer) primal-dual pair you constructed in part (b) are always equal. If true, prove. If false, give a counterexample.

(d) Take the ILP from part (a), and consider the ILP formed from the dual you found in part (b) by forcing all variables to be integers. True or false: The optimum values of these two ILPs are always equal.

4 A Path and Edge Game

Edith and Paris are playing the following game: We have a unweighted undirected graph G, and a source and sink s, t. Edith picks an edge in G, and Paris picks a path from s to t in G. Edith wins if
she picks an edge in Paris’s path, and Paris wins if this does not happen.

Both players are allowed to use randomized strategies, i.e. they choose a distribution of edges/paths respectively, and pick their edge/path from this distribution.

(a) Suppose Edith announces her distribution over edges to Paris, and then Paris gets to pick a distribution over paths based on Edith’s distribution. They then each sample from their distributions and decide who wins based on the results.

Briefly argue that if Paris knows Edith’s distribution, there is always an optimal strategy for Paris where he deterministically picks a single path.

(b) Consider two variants of the game:

- In Variant 1, Edith picks a distribution over edges and announces it to Paris. Paris then picks a single path.
- In Variant 2, Paris picks a distribution over paths and announces it to Edith. Edith then picks a single edge.

Fill in the blank: Regardless of how Paris plays, if Edith plays optimally, her chances of winning in Variant ___ are at least her chances of winning in the other Variant. (You don’t need to formally justify your answer)

(c) Show that in Variant 1, Edith has a strategy that wins with probability at least $1/C$ regardless of Paris’s strategy, where C is the size of the minimum s-t cut in G.

(d) Show that in Variant 2, Paris has a strategy such that Edith wins with probability at most $1/F$ regardless of Edith’s strategy, where F is the size of the max flow s-t flow in G. (Hint: Any max flow can be decomposed into a set of paths p, where we push f_p flow on the path p, such that $f(e) = \sum_{p: e \in p} f_p$ and $\sum_p f_p = F$.)

(e) Based on your answers to the previous parts, if both Edith and Paris play optimally, is Edith’s chance of winning in Variant 1 greater than, equal or, or less than her chance of winning in Variant 2?