CS 170 Discussion 9 Reference Sheet

Canonical Form. The canonical form of a linear program is

maximize
$$c^{\top}x$$

subject to $Ax \le b$
 $x \ge 0$

where $x \geq 0$ means that every entry of the vector x is greater than or equal to 0. Here, $f(x) = c^{\top}x$ is the objective function, and $Ax \leq b, x \geq 0$ are the constraints. The feasible region is the intersection of all the halfspaces defined by the constraints.

Dual. The dual of the canonical LP is

minimize
$$y^{\top}b$$

subject to $y^{\top}A \ge c^{\top}$
 $y \ge 0$

Weak duality: The objective value of any feasible primal \le objective value of any feasible dual. In other words, if we define x^* to be the optimizer of the LP above (in canonical form) and y^* to be the optimizer of its dual, weak duality implies that

$$c^{\top} x^* \le (y^*)^{\top} b$$

Strong duality: The optimal objective values of a primal LP and its dual are equal. In other words,

$$c^{\top}x^* = (y^*)^{\top}b$$

Note that strong duality always holds for linear programs as long as the primal or dual are feasible.

Simplex:

- 1. Start at an arbitrary vertex.
- 2. Denote the current vertex as x.
- 3. Look at all neighboring vertices y to x.
- 4. Find the neighbor y^* with the best objective value (if the LP is minimizing, y^* should have the smallest objective value, etc.).
- 5. If y^* has a better value than x, then we move to (i.e. visit) y^* and repeat steps 2 to 4. Otherwise, we have found the optimizer of the LP, and simply return x.
- → Runtime: worst case exponential time, average case polynomial time.

LP Solver Runtime: Any LP can be solved in (worst case) polynomial time using the Ellipsoid or Interior Point Method (IPM). Note: you do not need to know how the Ellipsoid method or IPM work, but you should know that they can be used to solve an LP in polynomial time.

Zero Sum Games: In this game, there are two players: a maximizer and a minimizer. We generally write the payoff matrix M from the perspective of the maximizer, so every row corresponds to an action that the maximizer can take, every column corresponds to an action that the minimize can take, and a positive entry corresponds to the maximizer winning. M is a n by m matrix, where n is the number of choices the maximizer has, and m is the number of choices the minimizer has.

$$M = \begin{bmatrix} M_{1,1} & M_{1,2} & \cdots & M_{1,m} \\ M_{2,1} & M_{2,2} & \cdots & M_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ M_{n,1} & M_{n,2} & \cdots & M_{n,m} \end{bmatrix}$$

A linear program that represents fixing the maximizer's choices to a probabilistic distribution where the maximizer has n choices, and the probability that the maximizer chooses choice i is p_i is the following:

$$\max z$$

$$M_{1,1} \cdot p_1 + \dots + M_{n,1} \cdot p_n \ge z$$

$$\vdots$$

$$M_{1,m} \cdot p_1 + \dots + M_{n,m} \cdot p_n \ge z$$

$$p_1 + p_2 + \dots + p_n = 1$$

$$p_1, p_2, \dots, p_n \ge 0$$

or in other words,

$$\max z \text{ s.t. } M^{\top} p \geq z \mathbf{1}, \ \mathbf{1}^{\top} p = 1, \ p \geq 0$$

where
$$p = (p_1, ..., p_n)$$
.

The dual represents fixing the minimizer's choices to a probabilistic distribution. If we let the probability that the minimizer chooses choice j be q_j , then the dual is the following:

$$\min w$$

$$M_{1,1} \cdot q_1 + \dots + M_{1,m} \cdot q_m \le w$$

$$\vdots$$

$$M_{n,1} \cdot q_1 + \dots + M_{n,m} \cdot q_m \le w$$

$$q_1 + q_2 + \dots + q_m = 1$$

$$q_1, q_2, \dots, q_m \ge 0$$

or in other words,

$$\min w \text{ s.t. } Mq \leq w\mathbf{1}, \ \mathbf{1}^{\top}q = 1, \ q \geq 0$$

where $q = (q_1, \ldots, q_m)$.

By strong duality, the optimal value of the game is the same regardless of whether you fix the minimizer's distribution first or the maximizer's distribution first; i.e. $z^* = w^*$, or $z^* + (-w^*) = 0$.

Reduction: Suppose we have an algorithm to solve problem A, how can we use it to solve problem B?

This has been and will continue to be a recurring theme of the class. Examples include

- Use LP to solve max flow.
- Use max-flow to solve min s-t cut.
- Use minimum spanning tree to solve maximum spanning tree.

In each case, we would transform the instance I of problem B we want to solve into an instance I' of problem A that we can solve, and also describe how to take a solution for I' and transform it into a solution for I:



Importantly, the transformation should be efficient, i.e., takes polynomial time. If we can do this, we say that we have reduced problem B to problem A.

Conceptually, an efficient reduction means that if we can solve problem A efficiently, we can also solve problem B efficiently. On the other hand, if we think that B cannot be solved efficiently, we also think that A cannot be solved efficiently. Put simply, we think that A is "at least as hard" as B to solve.

To show that the reduction works, you need to prove **both**:

- (1) If instance I' of problem A has a solution, then so does instance I of problem B.
- (2) If instance I of B has a solution, then so does instance I' of problem A.

If there exists a polynomial-time reduction from problem A to problem B, problem B is at least as hard as problem A. From this, we can define complexity class which sort of gauge 'hardness'.

Complexity Class Definitions

- NP: a problem in which a potential solution can be verified in polynomial time.
- P: a problem which can be solved in polynomial time.
- NP-Complete: a problem in NP which all problems in NP can polynomial-time reduce to.
- NP-Hard: any problem which is at least as hard as an NP-Complete problem.

Prove a problem is NP-Complete

To prove a problem is $\mathsf{NP}\text{-}\mathsf{Complete},$ you must prove the problem is in NP and it is in $\mathsf{NP}\text{-}\mathsf{Hard}.$

To prove that a problem is in NP, you must show there exists a polynomial verifier for it

To prove that a problem is NP-hard, you can reduce an NP-Complete problem to your problem.