CS 170, Fall 2025 Discussion 9 Reference Sheet S. Garg and J. Wright

CS 170 Discussion 9 Reference Sheet

Canonical Form. The canonical form of a linear program is

maximize ¢ ' x

subject to Az < b
x>0

where x > 0 means that every entry of the vector x is greater than or equal to 0. Here,
f(z) = c¢"x is the objective function, and Az < b,z > 0 are the constraints. The
feasible region is the intersection of all the halfspaces defined by the constraints.

Dual. The dual of the canonical LP is
minimize y b
subject to y' A > ¢'

y=0

Weak duality: The objective value of any feasible primal < objective value of any
feasible dual. In other words, if we define z* to be the optimizer of the LP above (in
canonical form) and y* to be the optimizer of its dual, weak duality implies that

CT.%* < (y*)Tb

Strong duality: The optimal objective values of a primal LP and its dual are equal. In
other words,

CT ot = (y*)T b
Note that strong duality always holds for linear programs as long as the primal or dual
are feasible.

Simplex:
1. Start at an arbitrary vertex.
2. Denote the current vertex as x.
3. Look at all neighboring vertices y to .
4

. Find the neighbor y* with the best objective value (if the LP is minimizing, y*
should have the smallest objective value, etc.).

5. If y* has a better value than z, then we move to (i.e. visit) y* and repeat steps 2
to 4. Otherwise, we have found the optimizer of the LP, and simply return .

— Runtime: worst case exponential time, average case polynomial time.

LP Solver Runtime: Any LP can be solved in (worst case) polynomial time using
the Ellipsoid or Interior Point Method (IPM). Note: you do not need to know how the
Ellipsoid method or IPM work, but you should know that they can be used to solve an LP
i polynomial time.

This content is protected and may not be shared, uploaded, or distributed. 1of4



CS 170, Fall 2025 Discussion 9 Reference Sheet S. Garg and J. Wright

Zero Sum Games: In this game, there are two players: a maximizer and a minimizer.
We generally write the payoff matrix M from the perspective of the maximizer, so every
row corresponds to an action that the maximizer can take, every column corresponds to
an action that the minimize can take, and a positive entry corresponds to the maximizer
winning. M is a n by m matrix, where n is the number of choices the maximizer has,
and m is the number of choices the minimizer has.

My Mis -+ My
B My Mo -+ Moy,
Mn 1 Mn,Q T Mn m

) )

A linear program that represents fixing the maximizer’s choices to a probabilistic
distribution where the maximizer has n choices, and the probability that the maximizer
chooses choice i is p; is the following:

max z

Mii-p1+--+My1-pn>2

Ml,m'p1+"'+Mn,m'pn22
prtprt--+pp=1
P1,P2,---3,Pn ZO

or in other words,
maxzst. M'p>21,1'p=1,p>0

where p = (p1,...,pn).

The dual represents fixing the minimizer’s choices to a probabilistic distribution. If we let
the probability that the minimizer chooses choice j be g;, then the dual is the following:

min w

Mig-qu+-+ My -gn<w

Mn,l'q1+"'+Mn,m'Qm§w
at+etotan=1
QI7Q2a---7QmZO

or in other words,
minw s.t. Mg < wl, qu =1,¢q>0

This content is protected and may not be shared, uploaded, or distributed. 2 of 4



CS 170, Fall 2025 Discussion 9 Reference Sheet S. Garg and J. Wright

where ¢ = (g1, .., qm).

By strong duality, the optimal value of the game is the same regardless of whether you
fix the minimizer’s distribution first or the mazximizer’s distribution first; i.e. z* = w*,
or z* + (—w*) = 0.

Reduction: Suppose we have an algorithm to solve problem A, how can we use it to
solve problem B?

This has been and will continue to be a recurring theme of the class. Examples include
e Use LP to solve max flow.
e Use max-flow to solve min s-t cut.
e Use minimum spanning tree to solve maximum spanning tree.

In each case, we would transform the instance I of problem B we want to solve into an
instance I’ of problem A that we can solve, and also describe how to take a solution for
I’ and transform it into a solution for I:

Instance I’ of B Reduction Instance I of
problem A problem B
Algorithm
for A
. , Reduction .
Solutionto / Solutionto /

Importantly, the transformation should be efficient, i.e., takes polynomial time. If we can
do this, we say that we have reduced problem B to problem A.

Conceptually, an efficient reduction means that if we can solve problem A efficiently, we
can also solve problem B efficiently. On the other hand, if we think that B cannot be
solved efficiently, we also think that A cannot be solved efficiently. Put simply, we think
that A is “at least as hard” as B to solve.

To show that the reduction works, you need to prove both:
(1) If instance I’ of problem A has a solution, then so does instance I of problem B.

(2) If instance I of B has a solution, then so does instance I’ of problem A.

If there exists a polynomial-time reduction from problem A to problem B, problem B is
at least as hard as problem A. From this, we can define complexity class which sort of
gauge ‘hardness’.

This content is protected and may not be shared, uploaded, or distributed. 3of4



CS 170, Fall 2025 Discussion 9 Reference Sheet S. Garg and J. Wright

Complexity Class Definitions
e NP: a problem in which a potential solution can be verified in polynomial time.
e P: a problem which can be solved in polynomial time.

e NP-Complete: a problem in NP which all problems in NP can polynomial-time
reduce to.

e NP-Hard: any problem which is at least as hard as an NP-Complete problem.

Prove a problem is NP-Complete
To prove a problem is NP-Complete, you must prove the problem is in NP and it is in
NP-Hard.

To prove that a problem is in NP, you must show there exists a polynomial verifier for
it.

To prove that a problem is NP-hard, you can reduce an NP-Complete problem to your
problem.

This content is protected and may not be shared, uploaded, or distributed. 4 of 4



