Note: Your TA may not get to all the problems. This is totally fine, the discussion worksheets are not designed to be finished in an hour. The discussion worksheet is also a resource you can use to practice, reinforce, and build upon concepts discussed in lecture, readings, and the homework.

If there exists a polynomial reduction from problem A to problem B, problem B is at least as hard as problem A. From this, we can define complexity class which sort of gauge 'hardness'.

Complexity Definitions

- NP: a decision problem in which a potential solution can be verified in polynomial time.
- P: a decision problem which can be solved in polynomial time.
- NP-Complete: a decision problem in NP which all problems in NP can reduce to.
- NP-Hard: any problem which is at least as hard as an NP-Complete problem.

Prove a problem is NP-Complete

To prove a problem is NP-Complete, you must prove the problem is in NP and it is in NP-Hard. To do this, you must show there exists a polynomial verifier, and reduce an NP-Complete problem to the problem.

1 NP Basics

Assume A reduces to B in polynomial time. In each part you will be given a fact about one of the problems. What information can you derive of the other problem given each fact?

1. A is in P.
2. B is in P.
3. A is NP-hard.
4. B is NP-hard.
2 NP or not NP, that is the question

For the following questions, circle the (unique) condition that would make the statement true.

(a) If B is NP-complete, then for any problem $A \in NP$, there exists a polynomial-time reduction from A to B.

Always True True iff $P = NP$ True iff $P \neq NP$ Always False

(b) If B is in NP, then for any problem $A \in P$, there exists a polynomial-time reduction from A to B.

Always True True iff $P = NP$ True iff $P \neq NP$ Always False

(c) 2 SAT is NP-complete.

Always True True iff $P = NP$ True iff $P \neq NP$ Always False

(d) Minimum Spanning Tree is in NP.

Always True True iff $P = NP$ True iff $P \neq NP$ Always False
3 Graph Coloring Problem

In the k-coloring problem, we are given an undirected graph $G = (V, E)$ and are asked to assign every vertex a color from the set $1, \ldots, k$, such that no two adjacent vertices have the same color. As you will prove in the homework 3-coloring is NP-Complete.

Prove that 10-coloring is also NP-Complete.
4 2-SAT and Variants

Max-2-SAT is defined as follows. Let C_1, \ldots, C_m be a collection of 2-clauses and b a non-negative integer. We want to determine if there is some assignment which satisfies at least b clauses.

Max-Cut is defined as follows. Let G be an undirected unweighted graph, and k a non-negative integer. We want to determine if there is some cut with at least k edges crossing it. Max-Cut is known to be NP-complete.

Show that Max-2-SAT is NP-complete by reducing from Max-Cut. Prove the correctness of your reduction.