CS 170, Spring 2025 Discussion 13 N. Haghtalab and J. Wright

Note: Your TA probably will not cover all the problems. This is totally fine, the discussion worksheets
are not designed to be finished in an hour. They are deliberately made long so they can serve as a
resource you can use to practice, reinforce, and build upon concepts discussed in lecture, readings,
and the homework.

1 Randomization for Approximation

Oftentimes, extremely simple randomized algorithms can achieve reasonably good approximation fac-
tors.

(a) Consider Max 3-SAT: given an instance with m clauses each containing exactly 3 distinct
literals, find the assignment that satisfies as many of them as possible. Come up with a simple
randomized algorithm that will achieve an approximation factor of % in expectation. That is,
if the optimal solution satisfies ¢ clauses, your algorithm should produce an assignment that
satisfies at least % clauses in expectation.

Hint: use linearity of expectation!

(b) Given a Max 3-SAT instance I, let OPT; denote the maximum fraction of clauses in I satisfied
by any variable assignment. What is the smallest value of OPT; over all instances I?7 In other
words, what is min; OPT;?

Hint: use part (a), and note that a random variable must sometimes be at least its mean.

Solution:

(a) Consider randomly assigning each variable a value. Let X; be a random variable that is 1 if
clause i is satisfied and 0 otherwise. We can see that the expectation of X is %. Note that
>~ X; is the total number of satisfied clauses. By linearity of expectation, the expected number
of clauses satisfied is % times the total number of clauses. Since the optimal number of satisfied
clauses is at most the total number of satisfied clauses, a random assignment will in expectation

have value at least %

(b) Our randomized algorithm satisfies fraction 7/8 of clauses in expectation for any instance. So
any instance must have a solution that satisfies at least fraction 7/8 of clauses (a random
variable must sometimes be at least its mean).

This lower bound is tight: Consider an instance with 3 variables and all 8 possible clauses
including these variables. Then any solution satisfies exactly 7 clauses.

2 MAX Mayhem

The MAX-CuUT problem (analogous to MIN-CUT) tries to find the maximum sum of edge weights
crossing a cut of the input graph. Remember that a cut must partition all vertices into exactly 2
disjoint subsets. There are no special s and t vertices.

The MAX-CuT problem is NP-Hard, in contrast to MIN-CUT, which can be solved in polynomial
time. Our goal is to find a good approximation algorithm for MAX-CuUT.

(a) Explain why we cannot simply solve the equal-weighted version of the MAX-CUT problem on G
by inverting the edges of G' (call this G) and then solving MIN-CUT on G? Note that inverting
edges means placing edges between pairs that don’t have edges in G, but not between pairs
that do have edges in G.
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Solution: Note that the total number of pairs of vertices over cut S,T of graph G is |S| - |T|.
In other words, it is not constant over all cuts. So, even if MIN-CUT returns S and T in G, this
may not correspond to a very large cut in the original G if |S| or |T'| is small!

MaX-CuUT has several 2-approximation algorithms; try to come up with one. Hint: Perhaps
think greedy or randomized!

Note: In 1994, Goemans and Williamson came up with an algorithm with an approximation
ratio of ~ 1.138. This is currently believed to be the best possible efficient approximation. In
fact, it turns out that any better approzximation algorithm to the MAX-CUT problem is believed
to be NP-hard!

Solution: Greedy solution: Define 2 bins, L and R, and arbitrarily assign the first vertex to

one of these bins. For each subsequent vertex, assign it to the bin that maximizes the sum of
crossing edge weights given the current partition.

Proof of approximation ratio: Let wvq,...,v, be the order in which vertices are added. Let
0(v;) = {(vi,w) € E : w € {v1,...,v;—1}} (edges between v; and its neighbors which have
already been added).

Z w(e) Z% Z w(e)

e€d(v)NC e€d(v)

Note that this inequality applies to individual vertices, so we sum over possible v.

wC) =Y > w(e)Z%Z > w(e)

veEV e€d(v)NC veV e€d(v)

1 1
eck

Randomized solution: Assign each vertex to one of two subsets with uniform probability.
Continuously repeat until at least half of the edges cross the cut.

Proof of approximation ratio: The expected weight of the randomized cut is:

w(C) = Z w(e) = Z w(e)P(e € C)

ecC ecl
1 1
ecklr

To help us evaluate how tight of a bound our approximation ratios give us, we introduce gap
problems. We define gap,-MAX-3SAT to be a decision problem that, upon inputs ¢ and m,
returns YES if there is an assignment satisfying > m clauses of ¢, and NO if every assignment
satisfies < am clauses of ¢. If neither statement is true, then it can output anything.

It turns out that the gap,-MAx-3SAT problem is closely related to é—approximations of MAX-
3SAT. Explain how, if we have a é—approximation algorithm, A, we can solve the gap,-MAX-
3SAT problem.

Challenge: you can also use a search version of the gap,-MAX-3SAT problem to generate a
é approximation. Try coming up with such an approximation algorithm!

Solution: Assume MAX-3SAT has a é—approximation algorithm called A. Then we can define
algorithm B that solves gap,-MAX-3SAT below:
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(a) Let m' = A(¢)
(b) Return YES iff m’ > am
(¢) Return anything otherwise

Assume algorithm B solves gap,-MAX-3SAT below. Then we can find A, a é-approximation
algorithm for MAX-3SAT. Let n be the number of clauses of ¢.

(a) Run B on (¢,1),...,(é,n)
(b) Let m be the largest number of clauses (¢, m) for which B returned YES

(¢) Return am
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3 Randomized algorithms basics

Philosophy of analyzing randomized algorithms. The first step is to always identify a
bad event — you want to identify when your randomness makes your algorithm fail. We will review
some techniques from class using the following problem as a way to learn how to use them in the
context of randomized algorithms.

Let G be a bipartite graph with n left vertices, and n right vertices on n? —n + 1 edges.
e Prove that G always has a perfect matching.

e Give a polynomial in n time algorithm to find this perfect matching.
We will now use some common techniques to analyze the following algorithm BlindMatching:

e Let w and o be independent and uniformly random permutations of [n].
o If {w(1),0(1)},{m(2),0(2)},...,{mw(n),o(n)} is a valid matching output it.
e Else output failed.

Union Bound. Suppose X1,..., X, are (not necessarily independent) Bernoulli random variables
(i.e. random variables valued {0,1}). Then, we have the following identity:

PriX:+ -+ X, >1] <Pr[X;=1]+Pr[Xo=1]+ -+ Pr[X,, =1].
Now, using union bound, we analyze our algorithm for BlindMatching. Note that an output

M = ({m(1),0(1)},....{w(n),o(n)})

is a valid perfect matching exactly when all edges of the form {(i),o(7)} are present in G. A “bad
event” happens if any of those pairs are not edges in G.

Let X ; be the indicator of the event that {m (i), o(¢)} is not present in our graph.

1. What is the probability that X, = 17

Solution: The probability that a random (u,v) pair is not an edge where w is a left vertex and

v is a right vertex is + — .
n n

2. Use the union bound to upper bound the probability that M is not a valid perfect matching.

Solution: By union bounding over all n edges chosen, the probability that M is not a perfect
matching is at most 1 — %

3. Conclude that G has a valid perfect matching.

Solution: The previous part implies that M has at least % probability of being a perfect
matching, which means a perfect matching exists in G.

The upper bound obtained on the probability of our bad event, i.e. of M not being a valid perfect
matching, is fairly high. In light of this, we introduce the technique of amplification.
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Amplification. The philosophy of amplification is that if we have a randomized algorithm that
fails with probability p, we can repeat the algorithm many times and aggregate the output of all
the runs to produce a new output such that the failure probability of the randomized algorithm is
significantly smaller. Now consider the following algorithm SpamBlindMatching:

e Run BlindMatching independently 1" times.

e If at least one of the runs outputted a valid perfect matching, return the output of such a run.

e Else output failed.
To see the effectiveness of amplification, let us answer the following questions:

1. What is tight upper bound on the failure probability of SpamBlindMatching?

Solution: The failure probability of SpamBlindMatching is bounded by (1 — %)T

2. How large should we set T if we want a failure probability of 67

Solution: Setting 7" = nIn(1/§) works because (1 — %)n <1

Notice that the failure probability of SpamBlindMatching is not only lower than that of BlindMatching,
but it can also be adjusted for based on the number of “amplifications” we make!

Now we switch gears and turn our attention to concentration phenomena and its usefulness in analyzing
randomized algorithms.

Markov’s inequality. Let X be a nonnegative valued random variable, then for every ¢t > 0:

Pr[X > < y

1. Markov’s inequality is false for random variables that can take on negative values! Give an
example.

Solution: Uniform 41 has expected value 0 but half chance of exceeding 0.

2. Give a tight example for Markov’s inequality. In particular, given p and ¢, construct a random
variable X such that y = E[X] and Pr[X > t] = £.

Solution: Counsider the random variable that is ¢ with probability u/t and 0 with probability
1—u/t.
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Chebyshev’s inequality. Let X be any random variable with well-defined variancd'] then

Pr [|X —E[X]| > t«/Var[X]} < tlg

To see the above inequality in action, consider the following problem: Let B be a bag with n balls,
k of which are red and n — k of which are blue. We do not have knowledge of k and wish to estimate
k from ¢ independent samples (with replacement) drawn from B. Let X be the number of red balls
sampled.

1. What is E[X]?

Solution: Defining X; as the random variable that the i-th sample is red, we use linearity of

expectation to yield

BIX] ~ EIX, 4+ X,]  EIX )0 - L.

2. What is Var[X]?

Solution: Defining the same indicators as those in the previous part, we use independence of
the X; to get

Var[X] = Var[X; + -+ + Xy] = Var[X ] + - - - + Var[X ] zék <1k>
n n

3. Choose a value for £ and give an algorithm that takes in n and X and outputs a number k such
that k € [k — eVk, k + V] with probability at least 1 — 4.

Solution: The algorithm is to output %X (given inputs n and X). E [%X} = k and
Var [%X] = an (1 — %) < %". This quantity deviates from k by %\/%" with probability

at most 6. We wish to choose £ so that % %" < €. This happens when ¢ = —35.

'In this course, all random variables will have well-defined variance (i.e. Var[-] < co).
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4 4-cycles

We use G(n,p) to denote the distribution of graphs obtained by taking n vertices and for each pair
of vertices i, j placing edge {i,j} independently with probability p.

(a)

(b)

Compute the expected number of edges in G(n,p)? Solution: By linearity of expectation, p(g)

n

since there are (2

) potential edges in the graph.

Compute the expected number of 4-cycles in G(n,p)? Solution: Each individual 4-cycle has

probability p* of appearing, since it consists of 4 edges. There are 3 possible 4-cycles on any
particular set of 4 vertices, and there are (2) sets of 4 vertices in the graph. So, by linearity of

expectation, the answer is (p*)(3)(}) = p* - %.

Describe, with proof of correctness, a polynomial time randomized algorithm that takes in n
as input and in poly(n)-time outputs a graph G such that G has no 4-cycles and the expected
number of edges in G is Q(n*/?3). Solution: Let G ~ G(n,p) for p = Cn=2/3; let e be the

number of edges and let ¢4 be the number of 4-cycles in G. Let G’ be the graph obtained by
deleting an edge from every 4-cycle, and output it; this deletion removes at most ¢4 edges, so
the number of edges e’ remaining in the graph satisfies: e’ > e — ¢4, which means E[e/] >
E[e] - E[C4] _ pn(gfl) . p4n(n71)(272)(n73) > pn2—4p4n4 o Cn4/3—404n4/3

> . Choosing C' as, say,
.5 finishes the proof, and each step takes polynomial time.
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