
CS 170, Spring 2019 DIS 13 P. Raghavendra & L. Trevisan

CS 170 DIS 13

Released on 2019-04-23

1 Document Comparison with Streams

You are given a document A and then a document B, both as streams of words. Find a
streaming algorithm that returns the degree of similarity between the words in the documents,
given by |I|

|U | , where I is the set of words that occur in both A and B, and U is the set of
words that occur in at least one of A and B.

Clearly explain your algorithm and briefly justify its correctness and memory usage (at
most log(|A| + |B|). Can we achieve accuracy to an arbitrary degree of precision? That is,
given any ε > 0 can we guarantee that the solution will always be within a factor of 1 ± ε
with high probability?

Solution: Simply use the number of distinct elements streaming algorithm we saw in
class, on the streams of A, B, and C := A∪B (for this third stream, process words in A and
words in B). Let |A|, |B|, and |C| be the output of the algorithm on the corresponding set,
our estimate for the number of distinct words in it. Then, |U | = |C|, and |I| = |A|+ |B|−|U |.
Thus our estimate for |I|/|U | = (|A|+ |B| − |C|)/|C|.

Memory usage is logarithmic in the length of the documents, as we’re using a constant
number (three) copies of the streaming algorithm shown in class, which used logarithmic
memory. Correctness flows from the correctness of the underlying streaming algorithm for
distinct elements, combined with the elementary axiom in set theory that |A ∩ B| = |A| +
|B| − |A ∪B|.

We can achieve accuracy within an arbitrary factor, because the accuracy of the similarity
estimate depends on the accuracy of the underlying number of distinct elements algorithm,
which we saw in class gives a result which is with high probability a fraction (1 ± ε) of the
true value.

The full mathematical details are beyond our scope, but we can do a rough analysis to
gauge our algorithm’s accuracy: the numerator is the sum of three outputs of the streaming
algorithm, so is with high probability 1 ± 3ε, and the denominator is within 1 ± ε, of their
true values, so the overall fraction is with high probability within (1±3ε)/(1∓1ε). The worst
case in this range would be (1 + 3ε)/(1− ε), (or swap the + and - signs), which simplifies to
(1+3ε)(1+ε)
(1−ε)(1+ε) = 1+4ε+3ε2

1−ε2 ≈ 1 + 4ε, because ε2 is negligible. In the other case, we obtain 1− 4ε,
so we conclude the overall accuracy is likely to be within 1±4ε. This calculation is not exact,
but suffices to argue that the accuracy of the overall algorithm is a function of the accuracy
of the underlying number of distinct elements algorithm it used, which can be set arbitrarily
low.

2 Lower Bounds for Streaming

(a) Consider the following simple ‘sketching’ problem. Preprocess a sequence of bits b1, . . . , bn
so that, given an integer i, we can return bi. How many bits of memory are required to
solve this problem exactly?

(b) Given a stream of integers x1, x2, . . ., the majority element problem is to output the

1

CS 170, Spring 2019 DIS 13 P. Raghavendra & L. Trevisan

integer which appears most frequently of all of the integers seen so far. Prove that
any algorithm which solves the majority element problem exactly must use Ω(n) bits of
memory, where n is the number of elements seen so far.

Solution:

(a) n bits. Intuitively, this is because at the end of the preprocessing, there are 2n different
‘states’ the algorithm has to be in, one for each bitstring. The number of states of a
machine with ` bits of memory is 2`, so ` ≥ n. A more detailed argument follows.

The preprocessing algorithm is a function f : {0, 1}n → {0, 1}`, where ` is the number
of bits of memory needed to answer queries. The query algorithm is a function q : [n]×
{0, 1}` → {0, 1}. Observe that we can use the query algorithm to invert f on its image:
if g(y) = (q(1, y), q(2, y), . . . , q(n, y)), then g(f(x)) = x for all x ∈ {0, 1}n. Hence f is
injective, which means that ` ≥ n.

(b) We can prove this by reduction from the previous problem. For any string of bits
b1, . . . , b`, we define a stream of integers 0, 0, (i, i)bi=1. Now we can query bi by adding
(i) to the stream and checking if it is the majority element. The length of the sequence
is n ≤ 2`+ 1, so the memory usage is at least n−1

2 bits.

An alternative approach is for the stream to be ((−1)bi · i)i∈[n]. Then we can query bi by
adding (i,−i) to the stream. If −i is the majority element, then bi = 1, otherwise bi = 0.

3 Universal Hashing

Let [m] denote the set {0, 1, ...,m− 1}. For each of the following families of hash functions,
determine whether or not it is universal. If it is universal, determine how many random bits
are needed to choose a function from the family.

(a) H = {ha1,a2 : a1, a2 ∈ [m]}, where m is a fixed prime and

ha1,a2(x1, x2) = a1x1 + a2x2 mod m

Notice that each of these functions has signature ha1,a2 : [m]2 → [m] , that is, it maps a
pair of integers in [m] to a single integer in [m].

(b) H is as before, except that now m = 2k is some fixed power of 2.

(c) H is the set of all functions f : [m]→ [m− 1].

Solution:

(a) The hash function is universal. The universality proof is the same as the one in the
textbook (only now we have a 2-universal family instead of 4-universal). To reiterate,
assume we are given two distinct pairs of integers x = (x1, x2) and y = (y1, y2). Without
loss of generality, let’s assume that x1 6= y1. If we chose values a1 and a2 that hash x
and y to the same value, then a1x1 + a2x2 ≡ a1y1 + a2y2 mod m. We can rewrite this
as a1(x1− y1) ≡ a2(y2−x2) mod m. Let c ≡ a2(y2−x2) mod m. Since m is prime and

2

CS 170, Spring 2019 DIS 13 P. Raghavendra & L. Trevisan

x1 6= y1, (x1 − y1) must have a unique inverse. So a1(x1 − y1) ≡ a2(y2 − x2) mod m if
and only if a1 ≡ c(x1 − y1)−1 mod m, which will only happen with probability 1/m.

We need to randomly pick two integers in the range [0, . . . ,m − 1], so we need 2 logm
random bits.

(b) This family is not universal. Consider the following inputs: (x1, x2) = (0, 2k−1) and
(y1, y2) = (2k−1, 0). We then have hα1,α2(x1, x2) = 2k−1α2 mod 2k and hα1,α2(y1, y2) =
2k−1α1 mod 2k. Now notice that if α2 is even (i.e. with probability 1/2) then hα1,α2(x1, x2) =
0 mod 2k otherwise (if α2 is odd) hα1,α2(x1, x2) = 2k−1 mod 2k; likewise for α1. So we
get that hα1,α2(x1, x2) = hα1,α2(y1, y2) with probability 1/2 > 1/2k, so the family is not
universal.

(c) This family is universal. To see that, fix x, y ∈ {0, 1, . . . ,m − 1} with x 6= y. Now we
need to figure out the following: how many (out of the (m − 1)m in total) functions
f : [m]→ [m−1] will collide on x and y, i.e. f(x) = f(y) = k, for some fixed k ∈ [m−1].
Well, there are (m− 1)m−2 different functions f : [m]→ [m− 1] that have the property
f(x) = f(y) = k (because I just fixed the output of 2 inputs to some fixed k ∈ [m − 1]
and allow the output of f for all other inputs to range over all m − 1 possible values).
Finally, ranging over all m − 1 values of k, we get that there are (m − 1)m−1 functions
f : [m]→ [m− 1] with the property f(x) = f(y). So the probability of picking one such

f is exactly (m−1)m−1

(m−1)m = 1
m−1 .

How many bits do we need in this case? Well, there is no succinct representation in this
case, so we need to write down the whole family of functions explicitly and then pick one
of the (m−1)m functions of the family. To do that we can imagine indexing all functions
with integers 1, . . . , (m−1)m and randomly picking one such integer k ∈ {1, . . . , (m−1m)};
this obviously requires log(m− 1)m = m log(m− 1) bits.

3

	 Document Comparison with Streams
	Lower Bounds for Streaming
	Universal Hashing

