Philosophy of analyzing randomized algorithms. The first step is to always identify a bad event. I.e. identify when your randomness makes your algorithm fail. We will review some techniques from class using the following problem as our “test bed”.

Let G be a bipartite graph with n left vertices, and n right vertices on $n^2 - n + 1$ edges.

1. Prove that G always has a perfect matching.
2. Give a polynomial in n time algorithm to find this perfect matching.

We will analyze the following algorithm BlindMatching:

- Let π and σ be independent and uniformly random permutations of $[n]$.
- If $\{\pi(1), \sigma(1)\}, \{\pi(2), \sigma(2)\}, \ldots, \{\pi(n), \sigma(n)\}$ is a valid matching output it.
- Else output failed.

Union Bound. Suppose X_1, \ldots, X_n are (not necessarily independent) $\{0, 1\}$ valued random variables, then

$$\Pr[X_1 + \cdots + X_n \geq 1] \leq \Pr[X_1 = 1] + \Pr[X_2 = 1] + \cdots + \Pr[X_n = 1].$$

Now we analyze our algorithm using union bound. An output $M = (\{\pi(1), \sigma(1)\}, \ldots, \{\pi(n), \sigma(n)\})$ is a valid perfect matching exactly when all edges of the form $\{\pi(i), \sigma(i)\}$ are present in G. A “bad event” happens if any of those pairs are not edges in G.

Let X_i be the indicator of the event that $\{\pi(i), \sigma(i)\}$ is not present in our graph.

1. What is the probability that $X_i = 1$?
2. Use the union bound to upper bound the probability that M is not a valid perfect matching.
3. Conclude that G has a valid perfect matching.

The upper bound obtained on the probability of our bad event, i.e. of M not being a valid perfect matching, is fairly high. In light of this, we introduce the technique of amplification.

Amplification. The philosophy of amplification is that if we have a randomized algorithm that fails with probability p, we can repeat the algorithm many times and aggregate the output of all the runs to produce a new output such that the failure probability of the randomized algorithm is significantly smaller. Now consider the following algorithm SpamBlindMatching.

- Run BlindMatching independently T times.
- If at least one of the runs outputted a valid perfect matching, return the output of such a run.
- Else output failed.

1. What is the failure probability of SpamBlindMatching?
2. How large should we set T if we want a failure probability of δ?
Markov’s inequality. Let X be a nonnegative valued random variable, then for every $t \geq 0$:

$$\Pr[X \geq tE[X]] \leq \frac{1}{t}.$$

1. Markov’s inequality is false for random variables that can take on negative values! Give an example.

2. Give a tight example for Markov’s inequality. In particular, given μ and t, construct a random variable X such that $\mu = E[X]$ and $\Pr[X \geq t\mu] = \frac{1}{t}$.

Chebyshev’s inequality. Let X be any random variable with well-defined variance, then

$$\Pr \left[\left| X - \mathbb{E}[X] \right| > t\sqrt{\mathbb{V}[X]} \right] \leq \frac{1}{t^2}.$$

To see the above inequality in action, consider the following problem:

Let B be a bag with n balls, k of which are red and $n-k$ of which are blue. We do not have knowledge of k and wish to estimate k from ℓ independent samples (with replacement) drawn from B.

Let X be the number of red balls sampled.

1. What is $\mathbb{E}[X]$?
2. What is $\mathbb{V}[X]$?
3. Choose a value for ℓ and give an algorithm that takes in n and X and outputs a number \tilde{k} such that $\tilde{k} \in [k - \varepsilon\sqrt{k}, k + \varepsilon\sqrt{k}]$ with probability at least $1 - \delta$.

Solution:

1. The probability that a random (u,v) pair is not an edge where u is a left vertex and v is a right vertex is $\frac{1}{n} - \frac{1}{n^2}$.
2. By union bounding over all n edges chosen, the probability that M is not a perfect matching is at most $1 - \frac{1}{n}$.
3. The previous part implies that M has at least $\frac{1}{2}$ probability of being a perfect matching, which means a perfect matching exists in G.
4. The failure probability of SpamBlindMatching is bounded by $(1 - \frac{1}{n})^T$.
5. Setting $T = n \ln(1/\delta)$ works because $(1 - \frac{1}{n})^n \leq \frac{1}{e}$.
6. Uniform ±1 has expected value 0 but half chance of exceeding 0.
7. Consider the random variable that is $t\mu$ with probability $1/t$ and 0 with probability $(t-1)/t$.

8. $\mathbb{E}[X] = \frac{k}{n} \ell$.

9. Defining X_i as the random variable that the i-th sample is red, and using independence of the X_i we have $\mathbb{V}[X] = \mathbb{V}[X_1 + \cdots + X_\ell] = \mathbb{V}[X_1] + \cdots + \mathbb{V}[X_\ell] = \frac{k}{n} \ell \left(1 - \frac{k}{n}\right)$.

10. The algorithm is to output $\frac{n}{\ell} X$. $\mathbb{E} \left[\frac{n}{\ell} X \right] = k$ and $\mathbb{V} \left[\frac{n}{\ell} X \right] = \frac{k}{n} \ell \left(1 - \frac{k}{n}\right) \leq \frac{k}{n} \ell$. This quantity deviates from k by $\frac{1}{\sqrt{\ell}} \sqrt{\frac{k}{n}}$, with probability at most δ. We wish to choose ℓ so that $\frac{1}{\sqrt{\ell}} \sqrt{\frac{k}{n}} < \varepsilon$. This happens when $\ell = \frac{n}{\varepsilon^2}$.

\footnote{In this course, all random variables will have well-defined variance}
1 4-cycles

We use $G(n,p)$ to denote the distribution of graphs obtained by taking n vertices and for each pair of vertices i, j placing edge $\{i, j\}$ independently with probability p.

(a) Compute the expected number of edges in $G(n,p)$? Solution: By linearity of expectation, $p^n(\binom{n}{2})$ since there are $\binom{n}{2}$ potential edges in the graph.

(b) Compute the expected number of 4-cycles in $G(n,p)$? Solution: There are 3 possible 4-cycles on a given set of 4 vertices so by linearity of expectation, the answer is $p^4 \cdot \frac{n(n-1)(n-2)(n-3)}{8}$.

(c) Give a polynomial time randomized algorithm that takes in n as input and in poly(n)-time outputs a graph G such that G has no 4-cycles and the expected number of edges in G is $\Omega(n^{4/3})$.

Solution: Let $G \sim G(n,p)$ for $p = Cn^{-2/3}$; let e be the number of edges and let c_4 be the number of 4-cycles in G. Let G' be the graph obtained by deleting an edge from every 4-cycle, and output it; this deletion removes at most c_4 edges, so the number of edges e' remaining in the graph satisfies: $e' \geq e - c_4$, which means $E[e'] \geq E[e] - E[c_4] = pn(n-1) - p^4n(n-1)(n-2)(n-3) > \frac{8}{3}$. Choosing C as, say, .5 finishes the proof, and each step takes polynomial time.

2 Lower Bounds for Streaming

(a) Consider the following simple ‘sketching’ problem. Preprocess a sequence of bits b_1, \ldots, b_n so that, given an integer i, we can return b_i. How many bits of memory are required to solve this problem exactly?

(b) Given a stream of integers x_1, x_2, \ldots, the majority element problem is to output the integer which appears most frequently of all of the integers seen so far. Prove that any algorithm which solves the majority element problem exactly must use $\Omega(n)$ bits of memory, where n is the number of elements seen so far.

Solution:

(a) n bits. Intuitively, this is because at the end of the preprocessing, there are 2^n different ‘states’ the algorithm has to be in, one for each bitstring. The number of states of a machine with ℓ bits of memory is 2^{2^ℓ}, so $\ell \geq n$. A more detailed argument follows.

The preprocessing algorithm is a function $f: \{0,1\}^n \rightarrow \{0,1\}^\ell$, where ℓ is the number of bits of memory needed to answer queries. The query algorithm is a function $q: [n] \times \{0,1\}^\ell \rightarrow \{0,1\}$. Observe that we can use the query algorithm to invert f on its image: if $g(y) = (q(1,y), q(2,y), \ldots, q(n,y))$, then $g(f(x)) = x$ for all $x \in \{0,1\}^n$. Hence f is injective, which means that $\ell \geq n$.

(b) We can prove this by reduction from the previous problem. For any string of bits b_1, \ldots, b_ℓ, we define a stream of integers $0, 0, (i, i)_{b_i=1}$. Now we can query b_i by adding i to the stream and checking if it is the majority element. The length of the sequence is $n \leq 2\ell + 1$, so the memory usage is at least $\frac{n-1}{2}$ bits.

An alternative approach is for the stream to be $((-1)^{b_i}, i)_{i \in [n]}$. Then we can query b_i by adding $(i, -i)$ to the stream. If $-i$ is the majority element, then $b_i = 1$, otherwise $b_i = 0$.

3
3 Streaming Integers

In this problem, we assume we are given an infinite stream of integers \(x_1, x_2, \ldots\), and have to perform some computation after each new integer is given. Since we may see many integers, we want to limit the amount of memory we have to use in total. For all of the parts below, give a brief description of your algorithm and a brief justification of its correctness.

(a) Show that using only a single bit of memory, we can compute whether the sum of all integers seen so far is even or odd.

(b) Show that we can compute whether the sum of all integers seen so far is divisible by some fixed integer \(N\) using \(O(\log N)\) bits of memory.

(c) Assume \(N\) is prime. Give an algorithm to check if \(N\) divides the product of all integers seen so far, using as few bits of memory as possible.

(d) Now let \(N\) be an arbitrary integer, and suppose we are given its prime factorization: \(N = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}\). Give an algorithm to check whether \(N\) divides the product of all integers seen so far, using as few bits of memory as possible. Write down the number of bits your algorithm uses in terms of \(k_1, \ldots, k_r\).

Solution:

(a) We set our single bit to 1 if and only if the sum of all integers seen so far is odd. This is sufficient since we don’t need to store any other information about the integers we’ve seen so far.

(b) Set \(y_0 = 0\). After each new integer \(x_i\), we set \(y_i = y_{i-1} + x_i \mod N\). The sum of all seen integers at step \(i\) is divisible by \(N\) if and only if \(y_i \equiv 0 \mod N\). Since each \(y_i\) is between 0 and \(N-1\), it only takes \(\log N\) bits to represent \(y_i\).

(c) We can do this with a single bit \(b\). Initially set \(b = 0\). Since \(N\) is prime, \(N\) can only divide the product of all \(x_i\)s if there is a specific \(i\) such that \(N\) divides \(x_i\). After each new \(x_i\), check if \(N\) divides \(x_i\). If it does, set \(b = 1\). \(b\) will equal 1 if and only if \(N\) divides the product of all seen integers.

(d) We can do this with \(\lceil \log_2(k_1) \rceil + \lceil \log_2(k_2) \rceil + \cdots + \lceil \log_2(k_r) \rceil\) bits. For each \(i\) between 1 and \(r\), we track the largest value \(t_i \leq k_i\) such that \(p^{t_i}\) divides the product of all seen numbers. We start with \(t_i = 0\) for all \(i\). When a new number \(m\) is seen, we find the largest \(t'_i\) such that \(p^{t'_i}\) divides \(m\) and set \(t_i = \min\{t'_i + t_i, k_i\}\). We stop once \(t_i = k_i\) for all \(i\) as this implies that \(N\) divides the product of all seen numbers.