Note: Your TA may not get to all the problems. This is totally fine, the discussion worksheets are not designed to be finished in an hour. The discussion worksheet is also a resource you can use to practice, reinforce, and build upon concepts discussed in lecture, readings, and the homework.

1 Universal Hashing

Let $[m]$ denote the set $\{0,1,\ldots,m-1\}$. Recall that a family of functions \mathcal{H} is universal if for any $x \neq y, \Pr_{h \sim \mathcal{H}}[h(x) = h(y)] \leq 1/m$. That is, the chance that $h(x) = h(y)$ if we sample h uniformly at random from \mathcal{H} is at most $1/m$.

For each of the following families of hash functions, determine whether or not it is universal. If it is universal, determine how many random bits are needed to choose a function from the family.

(a) $H = \{h_{a_1,a_2} : a_1,a_2 \in [m]\}$, where m is a fixed prime and

\[h_{a_1,a_2}(x_1,x_2) = a_1x_1 + a_2x_2 \mod m \]

Notice that each of these functions has signature $h_{a_1,a_2} : [m]^2 \to [m]$, that is, it maps a pair of integers in $[m]$ to a single integer in $[m]$.

(b) H is as before, except that now $m = 2^k$ for $k > 1$ is some fixed power of 2.

(c) H is the set of all functions $f : [m] \to [m-1]$.

Solution:

(a) The hash function is universal. The universality proof is the same as the one in the textbook (only now we have a 2-universal family instead of 4-universal). To reiterate, assume we are given two distinct pairs of integers $x = (x_1,x_2)$ and $y = (y_1,y_2)$. Without loss of generality, let’s assume that $x_1 \neq y_1$. If we chose values a_1 and a_2 that hash x and y to the same value, then

\[a_1x_1 + a_2x_2 \equiv a_1y_1 + a_2y_2 \mod m. \]

We can rewrite this as

\[a_1(x_1 - y_1) \equiv a_2(y_2 - x_2) \mod m. \]

Let $c \equiv a_2(y_2 - x_2) \mod m$. Since m is prime and $x_1 \neq y_1$, $(x_1 - y_1)$ must have a unique inverse. So $a_1(x_1 - y_1) \equiv a_2(y_2 - x_2) \mod m$ if and only if $a_1 \equiv c^{-1} \mod m$, which will only happen with probability $1/m$.

We need to randomly pick two integers in the range $[0,\ldots,m-1]$, so we need $2 \log m$ random bits.

(b) This family is not universal. Consider the following inputs: $(x_1,x_2) = (0,2^{k-1})$ and $(y_1,y_2) = (2^{k-1},0)$. We then have

\[h_{a_1,a_2}(x_1,x_2) = 2^{k-1}a_2 \mod 2^k \]

and

\[h_{a_1,a_2}(y_1,y_2) = 2^{k-1}a_1 \mod 2^k \]

Now notice that if a_2 is even (i.e. with probability $1/2$) then $h_{a_1,a_2}(x_1,x_2) = 0 \mod 2^k$ otherwise (if a_2 is odd) $h_{a_1,a_2}(x_1,x_2) = 2^{k-1} \mod 2^k$; likewise for a_1. So we get that

\[h_{a_1,a_2}(x_1,x_2) = h_{a_1,a_2}(y_1,y_2) \]

with probability $1/2 > 1/2^k$, so the family is not universal.
(c) This family is universal. To see that, fix \(x, y \in \{0, 1, \ldots, m - 1\} \) with \(x \neq y \). Now we need to figure out the following: how many (out of the \((m - 1)^m\) in total) functions \(f : [m] \to [m - 1] \) will collide on \(x \) and \(y \), i.e. \(f(x) = f(y) = k \), for some fixed \(k \in [m - 1] \). Well, there are \((m - 1)^{m-2}\) different functions \(f : [m] \to [m - 1] \) that have the property \(f(x) = f(y) = k \) (because I just fixed the output of 2 inputs to some fixed \(k \in [m - 1] \) and allow the output of \(f \) for all other inputs to range over all \(m - 1 \) possible values). Finally, ranging over all \(m - 1 \) values of \(k \), we get that there are \((m - 1)^{m-1}\) functions \(f : [m] \to [m - 1] \) with the property \(f(x) = f(y) \). So the probability of picking one such \(f \) is exactly \(\frac{(m - 1)^{m-1}}{(m - 1)^{m-2}} = \frac{1}{m-1} \).

There are \((m - 1)^m\) functions in this family, so we need \(\log((m - 1)^m) = m \log(m - 1) \) bits to distinguish between them.

2 Streaming for Voting

Consider the following scenario. Votes are being cast for a major election, but due to a lack of resources, only one computer is available to count the votes. Furthermore, this computer only has enough space to store one vote at a time, plus a single extra integer. Each vote is a single integer 0 or 1, denoting a vote for Candidate A and Candidate B respectively.

(a) Come up with an algorithm to determine whether candidate A or B won, or if there was a tie.

(b) Consider now an election with \(k > 2 \) candidates. Say there is a winner only if a candidate receives more than 50 percent of the vote, otherwise there is no winner. If we’re given another integer’s worth of storage, come up with an algorithm to determine the winner if there is one. For simplicity, your algorithm can output any of the candidates in the case that there is no winner (not necessarily the one with the most votes). Votes are now numbered 1, 2, \ldots, \(k \).

Solution:

(a) Initialize one of the integers \(i \) to 0. Use the other to store the incoming votes. For every vote for Candidate A, decrement \(i \) by one. For every vote to candidate B, increment \(i \) by 1.

If at the end \(i \) is negative, Candidate A won. If at the end \(i \) is positive, Candidate B won. If \(i \) is 0, there was a tie.

(b) Let \(m \) be a variable which will be a number in \([k]\), meant to represent the current winner of the election. Let \(i \) be a counter similar to in the previous part. For each element in the stream, do the following. If \(i \) is 0, set \(m \) equal to the value of the current vote, and set \(i \) to 1. Else if \(i > 0 \), and \(m \) is equal to the current vote in the stream, increment \(i \). Else decrement \(i \).

At the end, if there is a majority vote, \(m \) will contain it. However, if there is no majority vote, \(m \) will still contain some element of the stream.

To see this, assume wlog 1 is the winner, i.e. gets more than half of the votes. Think of the value \(j \) which is \(i \) when \(m = 1 \) and \(-i\) when \(m \neq 1 \). Intuitively, at all times \(j \) encodes the margin by which 1 is currently “winning” (if the margin is negative, 1 needs \(-j + 1\) votes to be winning). We just need to show this value is positive at the end of the algorithm. Every vote for 1 increases \(j \) by 1, and every vote for a candidate besides 1 can at most decrease \(j \) by 1 (but might increase \(j \) if e.g. we get a vote for 2 while \(m = 3 \)). Since 1 gets more than half the votes, \(j \) must be positive at the end of the algorithm.