
CS 170, Spring 2025 Discussion 13 N. Haghtalab and J. Wright

Note: Your TA probably will not cover all the problems. This is totally fine, the discussion worksheets
are not designed to be finished in an hour. They are deliberately made long so they can serve as a
resource you can use to practice, reinforce, and build upon concepts discussed in lecture, readings,
and the homework.

1 Randomization for Approximation

Oftentimes, extremely simple randomized algorithms can achieve reasonably good approximation fac-
tors.

(a) Consider Max 3-SAT: given an instance with m clauses each containing exactly 3 distinct
literals, find the assignment that satisfies as many of them as possible. Come up with a simple
randomized algorithm that will achieve an approximation factor of 7

8 in expectation. That is,
if the optimal solution satisfies c clauses, your algorithm should produce an assignment that
satisfies at least 7c

8 clauses in expectation.

Hint: use linearity of expectation!

(b) Given a Max 3-SAT instance I, let OPTI denote the maximum fraction of clauses in I satisfied
by any variable assignment. What is the smallest value of OPTI over all instances I? In other
words, what is minI OPTI?

Hint: use part (a), and note that a random variable must sometimes be at least its mean.

This content is protected and may not be shared, uploaded, or distributed. 1 of 6

CS 170, Spring 2025 Discussion 13 N. Haghtalab and J. Wright

2 MAX Mayhem

The Max-Cut problem (analogous to Min-Cut) tries to find the maximum sum of edge weights
crossing a cut of the input graph. Remember that a cut must partition all vertices into exactly 2
disjoint subsets. There are no special s and t vertices.

The Max-Cut problem is NP-Hard, in contrast to Min-Cut, which can be solved in polynomial
time. Our goal is to find a good approximation algorithm for Max-Cut.

(a) Explain why we cannot simply solve the equal-weighted version of the Max-Cut problem on G
by inverting the edges of G (call this G) and then solving Min-Cut on G? Note that inverting
edges means placing edges between pairs that don’t have edges in G, but not between pairs
that do have edges in G.

(b) Max-Cut has several 2-approximation algorithms; try to come up with one. Hint: Perhaps
think greedy or randomized!

Note: In 1994, Goemans and Williamson came up with an algorithm with an approximation
ratio of ≃ 1.138. This is currently believed to be the best possible efficient approximation. In
fact, it turns out that any better approximation algorithm to the Max-Cut problem is believed
to be NP-hard!

(c) To help us evaluate how tight of a bound our approximation ratios give us, we introduce gap
problems. We define gapα-Max-3SAT to be a decision problem that, upon inputs ϕ and m,
returns YES if there is an assignment satisfying ≥ m clauses of ϕ, and NO if every assignment
satisfies ≤ αm clauses of ϕ. If neither statement is true, then it can output anything.

It turns out that the gapα-Max-3SAT problem is closely related to 1
α -approximations of Max-

3SAT. Explain how, if we have a 1
α -approximation algorithm, A, we can solve the gapα-Max-

3SAT problem.

Challenge: you can also use a search version of the gapα-Max-3SAT problem to generate a
1
α approximation. Try coming up with such an approximation algorithm!

This content is protected and may not be shared, uploaded, or distributed. 2 of 6

CS 170, Spring 2025 Discussion 13 N. Haghtalab and J. Wright

3 Randomized algorithms basics

Philosophy of analyzing randomized algorithms. The first step is to always identify a
bad event – you want to identify when your randomness makes your algorithm fail. We will review
some techniques from class using the following problem as a way to learn how to use them in the
context of randomized algorithms.

Let G be a bipartite graph with n left vertices, and n right vertices on n2 − n+ 1 edges.

• Prove that G always has a perfect matching.

• Give a polynomial in n time algorithm to find this perfect matching.

We will now use some common techniques to analyze the following algorithm BlindMatching:

• Let π and σ be independent and uniformly random permutations of [n].

• If {π(1),σ(1)}, {π(2),σ(2)}, . . . , {π(n),σ(n)} is a valid matching output it.

• Else output failed.

Union Bound. SupposeX1, . . . ,Xn are (not necessarily independent) Bernoulli random variables
(i.e. random variables valued {0, 1}). Then, we have the following identity:

Pr[X1 + · · ·+Xn ≥ 1] ≤ Pr[X1 = 1] + Pr[X2 = 1] + · · ·+ Pr[Xn = 1].

Now, using union bound, we analyze our algorithm for BlindMatching. Note that an output

M = ({π(1),σ(1)}, . . . , {π(n),σ(n)})

is a valid perfect matching exactly when all edges of the form {π(i),σ(i)} are present in G. A “bad
event” happens if any of those pairs are not edges in G.

Let Xi be the indicator of the event that {π(i),σ(i)} is not present in our graph.

1. What is the probability that Xi = 1?

2. Use the union bound to upper bound the probability that M is not a valid perfect matching.

3. Conclude that G has a valid perfect matching.

The upper bound obtained on the probability of our bad event, i.e. of M not being a valid perfect
matching, is fairly high. In light of this, we introduce the technique of amplification.

This content is protected and may not be shared, uploaded, or distributed. 3 of 6

CS 170, Spring 2025 Discussion 13 N. Haghtalab and J. Wright

Amplification. The philosophy of amplification is that if we have a randomized algorithm that
fails with probability p, we can repeat the algorithm many times and aggregate the output of all
the runs to produce a new output such that the failure probability of the randomized algorithm is
significantly smaller. Now consider the following algorithm SpamBlindMatching:

• Run BlindMatching independently T times.

• If at least one of the runs outputted a valid perfect matching, return the output of such a run.

• Else output failed.

To see the effectiveness of amplification, let us answer the following questions:

1. What is tight upper bound on the failure probability of SpamBlindMatching?

2. How large should we set T if we want a failure probability of δ?

Notice that the failure probability of SpamBlindMatching is not only lower than that of BlindMatching,
but it can also be adjusted for based on the number of “amplifications” we make!

Now we switch gears and turn our attention to concentration phenomena and its usefulness in analyzing
randomized algorithms.

Markov’s inequality. Let X be a nonnegative valued random variable, then for every t ≥ 0:

Pr[X ≥ t] ≤ E[X]

t
.

1. Markov’s inequality is false for random variables that can take on negative values! Give an
example.

2. Give a tight example for Markov’s inequality. In particular, given µ and t, construct a random
variable X such that µ = E[X] and Pr[X ≥ t] = µ

t .

Chebyshev’s inequality. Let X be any random variable with well-defined variance1, then

Pr
[
|X −E[X]| > t

√
Var[X]

]
≤ 1

t2
.

To see the above inequality in action, consider the following problem: Let B be a bag with n balls,
k of which are red and n− k of which are blue. We do not have knowledge of k and wish to estimate
k from ℓ independent samples (with replacement) drawn from B. Let X be the number of red balls
sampled.

1In this course, all random variables will have well-defined variance (i.e. Var[·] < ∞).

This content is protected and may not be shared, uploaded, or distributed. 4 of 6

CS 170, Spring 2025 Discussion 13 N. Haghtalab and J. Wright

1. What is E[X]?

2. What is Var[X]?

3. Choose a value for ℓ and give an algorithm that takes in n and X and outputs a number k̃ such
that k̃ ∈ [k − ε

√
k, k + ε

√
k] with probability at least 1− δ.

This content is protected and may not be shared, uploaded, or distributed. 5 of 6

CS 170, Spring 2025 Discussion 13 N. Haghtalab and J. Wright

4 4-cycles

We use G(n, p) to denote the distribution of graphs obtained by taking n vertices and for each pair
of vertices i, j placing edge {i, j} independently with probability p.

(a) Compute the expected number of edges in G(n, p)?

(b) Compute the expected number of 4-cycles in G(n, p)?

(c) Describe, with proof of correctness, a polynomial time randomized algorithm that takes in n
as input and in poly(n)-time outputs a graph G such that G has no 4-cycles and the expected
number of edges in G is Ω(n4/3).

This content is protected and may not be shared, uploaded, or distributed. 6 of 6

	Randomization for Approximation
	MAX Mayhem
	Randomized algorithms basics
	4-cycles

