
CS 170, Spring 2025 Homework 5 (Optional) N. Haghtalab and J. Wright

CS 170 Homework 5 (Optional)

1 Study Group

List the names and SIDs of the members in your study group. If you have no collaborators,
explicitly write “none”.

2 Three-Legged Race

You are a teacher for two classes, each of n students. You are organizing a three-legged race,
where students are paired with students in the opposing class. Each student must be paired
up, and each student will only be paired with one other student. In an ideal three-legged
race, you and your partner are evenly matched in terms of stride. Luckily, you have data on
the stride lengths of all your students. Design an algorithm to minimize the total difference
in stride length between pairs.

Please provide an algorithm description, a proof of correctness, and a runtime analysis.

Solution: Main Idea: We will use a greedy algorithm, described as follows. Sort the
students in each class (A and B) separately by stride length. Pair the student with the
shortest stride length in Class A with the student with the shortest stride length in Class B.
Continue pairing Class A’s ith-stride length student with Class B’s ith-stride length student,
until all n students have been paired.

Proof of Correctness: We use an exchange argument. Let S be the set of pairings that
our algorithm provides, and let O be the set of optimal pairings to minimize total difference
in stride length. Represent student i from Class A’s stride length as Ai, and from Class B as
Bi. Let S and O both be sorted by Ai.

Consider the first pairing that differs between S and O. Call this pairing in S the ith pairing,
with student i from Class A and student i from Class B. Then, in O, student i must have
been paired with a student j in Class B, where i < j, since this is the first difference between
S and O. Similarly, student i in Class B must have been paired with a student k in Class A,
where i < k.

The different cases of ordering Ai, Ak, Bi, Bj are listed below. Consider exchanging the pairs
in O so that Class A and Class B student is are paired together, and Class A student k is
paired with Class B student j.

1. Ai, Ak, Bi, Bj . The stride length contribution from these pairings before the exchange
is (Bj −Ai) + (Bi −Ak), which is the same after.

2. Ai, Bi, Ak, Bj . The stride length contribution from these pairings before the exchange
is (Bj −Ai) + (Ak −Bi) ≥ (Bi −Ai) + (Bj −Ak) after the exchange.

3. Ai, Bi, Bj , Ak. Similarly, the stride length before is ≥ the stride length after.

The remaining scenarios (Bi, Ak, Ai, Bj ; Bi, Ai, Ak, Bj ; Bi, Ai, Bj , Ak) follow similarly.
Since the exchange leads to a pairing that has a total stride length of at most the optimal

This content is protected and may not be shared, uploaded, or distributed. 1 of 12



CS 170, Spring 2025 Homework 5 (Optional) N. Haghtalab and J. Wright

solution, and the exchange agrees with our greedy algorithm at each (swapping) step, our
greedy algorithm is optimal.

Runtime: Sorting takes O(n log n) time, and pairing them up takes O(n) time. The algo-
rithm in total takes O(n log n) time.

This content is protected and may not be shared, uploaded, or distributed. 2 of 12



CS 170, Spring 2025 Homework 5 (Optional) N. Haghtalab and J. Wright

3 Counting Shortest Paths

Given an undirected unweighted graph G and a vertex s, let p(v) be the number of distinct
shortest paths from s to v. We will use the convention that p(s) = 1 in this problem. Give
an O(|V | + |E|)-time algorithm to compute p(v) mod 1700 for all vertices. Only the main
idea and runtime analysis are needed.

Hint: For any vertex v, how can we express p(v) as a function of other p(u)?

Note: As a secondary question, you should ask yourself whether the runtime would remain
the same if we were computing p(v) rather than p(v) mod 1700.

Solution: Main idea If v is distance d > 0 from s, the first d − 1 edges in any shortest
path to v will be a shortest path to a neighbor of v distance d− 1 from s. Furthermore, this
mapping from shortest paths to v and shortest paths to neighbors of v is bijective. So letting
N(v) be the set of neighbors of v at distance d− 1, we get that p(v) =

∑
u∈N(v) p(u).

Our algorithm is now: use BFS to compute all distances from s. Next, we set p(s) = 1, then
for the remaining vertices in increasing distance order, we can compute p(v) mod 1700 =∑

u∈N(v) p(u) mod 1700. Since we look at vertices in increasing distance order, all u in N(v)
have p(u) computed already.

Runtime analysis BFS takes O(|V |+ |E|) time. Computing p(v) mod 1700 from its neigh-
bors takes time O(deg(v)), so the total time to compute all p(v) mod 1700 is O(|E|).

If we did not have the mod 1700, and we instead wanted p(v) exactly, we would have a higher
runtime, as the number of length-d paths to v can be exponential in d and so arithmetic on
these numbers would not be constant time.

This content is protected and may not be shared, uploaded, or distributed. 3 of 12



CS 170, Spring 2025 Homework 5 (Optional) N. Haghtalab and J. Wright

4 Preventing Conflict

A group of n guests shows up to a house for a party, but the host knows that m pairs of these
guests are enemies (a guest can be enemies with multiple other guests). There are two rooms
in the house, and the host wants to distribute guests among the rooms, breaking up as many
pairs of enemies as possible. The guests are all waiting outside the house and are impatient
to get in, so the host needs to assign them to the two rooms quickly, even if this means that
it’s not the best possible solution. Come up with a O(n+m)-time algorithm that breaks up
at least half of the pairs of enemies.

Please provide an algorithm description, a proof of correctness, and a runtime analysis.

Solution:

Main Idea: We add the guests one-by-one, each time adding a guest to the room that
currently has less of their enemies (in the case of a tie, we choose one of the rooms arbitrarily).

Proof of Correctness: Let mi be the number of the ith guest’s enemies that have already
been added to a room when we’re adding the ith guest. We break up at least mi/2 of these
enemy pairs by adding this guest to the room with less of their enemies. So we break up at
least

∑
imi/2 of the

∑
imi total enemy pairs as desired.

Running Time: Each guest is iterated through once, and we can figure out which room to
assign them in time proportional to the number of enemies they have (using e.g. an array
tracking which room we’ve assigned each individual to so far), i.e. each pair of enemies is
considered at most twice, so the total time is O(n+m).

(Comment: This problem is equivalent to the max-cut problem: Given an undirected graph,
in the max cut problem we want to split the vertices into two sets so that as many edges as
possible have one endpoint in each set)

This content is protected and may not be shared, uploaded, or distributed. 4 of 12



CS 170, Spring 2025 Homework 5 (Optional) N. Haghtalab and J. Wright

5 Twenty Questions

Your friend challenges you to a variant of the guessing game 20 questions. First, they pick
some word (w1, w2, ..., wn) according to a known probability distribution (p1, p2, ..., pn), i.e.
word wi is chosen with probability pi. Then, you ask yes/no questions until you are certain
which word has been chosen. You can ask any yes/no question, meaning you can eliminate
any subset S of the possible words with the question “Is the word in S?”.

Define the cost of a guessing strategy as the expected number of queries it requires to deter-
mine the chosen word, and let an optimal strategy be one which minimizes cost. Design an
O(n log n) algorithm to determine the cost of the optimal strategy.

Please provide an algorithm description, a proof of correctness, and a runtime analysis.

Note: We are only considering deterministic guessing strategies in this question. Including
randomized strategies doesn’t change the answer, but it makes the proof of correctness more
difficult.

Solution:

This solution is inspired by the observation that in binary coding, each bit of a codeword we
read further narrows the possible symbols being encoded, just like a question in the game
above. This correspondence is made rigorous in the proof of correctness.

Main idea: Create a Huffman tree on (w1···n) with weights (p1···n) and return the expected
length of a codeword under the corresponding encoding.

Proof of correctness: Note that any guessing strategy gives a prefix-free binary encoding of
the words (w1···n), where each word wi is encoded by sequences of yes/no answers which
would lead you to conclude that wi was chosen. This encoding is prefix-free because the
game only ends when all words except one have been eliminated.

Additionally, any prefix-free encoding of the words can be made into a guessing strategy as
follows. Let xn ∈ {0, 1}n represent the sequence of yes/no answers received on the first n
questions, with 1 corresponding to yes and 0 corresponding to no. Then asking at step n+1
whether the word can be encoded by a string with the prefix xn ◦ 1 (i.e. the answers so far
followed by a yes) will result in the final sequence of answers being a valid encoding of the
chosen word.

In this correspondence, the expected code length equals the cost of a guessing strategy.
Therefore finding an optimal strategy is equivalent to finding a prefix-free encoding of the
words with minimum expected codelength, which is exactly what Huffman coding does. To
get the final answer, we calculate the expected codelength of the optimal strategy, which can
be done by DFS from the root of the Huffman tree.

Runtime: A Huffman tree can be constructed in n log(n) time (this is dominated by the time
to sort the probabilities). The average codelength (and thus cost of the associated strategy)
can be calculated in O(n) time by DFS. Therefore the total runtime is O(n log(n)).

This content is protected and may not be shared, uploaded, or distributed. 5 of 12



CS 170, Spring 2025 Homework 5 (Optional) N. Haghtalab and J. Wright

6 Rigged Tournament

Peter is in charge of organizing a football tournament with n teams. The tournament is a
single-elimination tournament: if teams i and j play, the team that loses is out of the tour-
nament and cannot play any more games. There are no ties.

Peter’s shady friend Jeff has given him the following inside information: if teams i and j
play, then they will score a combined total of f(i, j) ≥ 0 points in that game and furthermore
Jeff can rig the match so that the team of his choice wins. Peter wishes to find a tournament
schedule which (1) maximizes the number of points scored in the tournament, and (2) makes
his favorite team, team i∗, win the tournament. Give an efficient algorithm to solve this
problem and provide its runtime; proof of correctness is not required.

Note: teams need not play an equal number of games in the tournament. For example,
if the teams are {1, 2, 3, 4}, then a valid tournament schedule (where (i, j) means i plays j
and i wins) is [(1, 2), (1, 3), (4, 1)]. Here, team 4 wins the tournament.

Solution: Let G = (V,E) be the complete graph on n vertices with edge weights ℓ(i, j) =
f(i, j). The key observation is that a tournament schedule corresponds to a tree in this graph,
and the weight of the tree is the number of points scored across all games in that tournament
schedule. Therefore, let T be the Maximum Spanning Tree in G. The weight of T is the
maximum number of points scored in the tournament. To extract the sequence of games,
simply run DFS or BFS from i∗, and play the games by largest depth first, making the team
with a lower depth always win. For the runtime, DFS/BFS takes O(n) time, which means
the MST algorithm is the bottleneck. This takes O(|E| log |V |) = O(n2 log n) since there are
O(n2) edges (the complete graph).

This content is protected and may not be shared, uploaded, or distributed. 6 of 12



CS 170, Spring 2025 Homework 5 (Optional) N. Haghtalab and J. Wright

7 Adding Many Edges At Once

Given an undirected, weighted graph G(V,E), consider the following algorithm to find the
minimum spanning tree. This algorithm is similar to Prim’s, except rather than growing out
a spanning tree from one vertex, it tries to grow out the spanning tree from every vertex at
the same time.

procedure FindMST(G(V,E))
T ← ∅
while T is not a spanning tree do

Let S1, S2 . . . Sk be the connected components of the graph with vertices V and
edges T

For each i ∈ {1, . . . , k}, let ei be the minimum-weight edge with exactly one endpoint
in Si

T ← T ∪ {e1, e2, . . . ek}
return T

For example, at the start of the first iteration, every vertex is its own Si.

For simplicity, in the following parts you may assume that no two edges in G have the same
weight.

(a) Show that this algorithm finds a minimum spanning tree.

(b) Give a tight upper bound on the worst-case number of iterations of the while loop in
one run of the algorithm. Justify your answer.

(c) Using your answer to the previous part, give an upper bound on the runtime of this
algorithm.

Solution:

This algorithm is known as Boruvka’s algorithm. Despite perhaps appearing complicated for
an MST algorithm, it was discovered in 1926, predating both Prim’s and Kruskal’s. This
algorithm is still of interest due to being easily parallelizable, as well as being the basis for a
randomized MST algorithm that runs in expected time O(|E|).

(a) If we add an edge ei to T , it is because it is the cheapest edge with exactly one endpoint
in Si. So applying the cut property to the cut (Si, V − Si) we see that ei must be in
the (unique) minimum spanning tree. So every edge we add must be in the minimum
spanning tree, i.e. this algorithm finds exactly the minimum spanning tree.

(b) The number of components in the graph with vertices V and edges T starts out at
|V |, with one component for each vertex. If there are k components at the start of
an iteration, we must add at least k/2 edges in that iteration: every component Si

contributes some ei to the set of edges we’re adding, and each edge we add can only
have been contributed by up to two components. This means the number of components
decreases by at least a factor of 2 in every iteration. Thus, the while loop runs for at
most log |V | iterations.

This content is protected and may not be shared, uploaded, or distributed. 7 of 12



CS 170, Spring 2025 Homework 5 (Optional) N. Haghtalab and J. Wright

(c) The previous part shows that at most log |V | iterations are needed. Each iteration can
be performed in O(|E|) time (e.g. you can compute the components in O(|E|) time,
and then initialize a table which stores the cheapest edge with exactly one endpoint in
each component, and then using a linear scan over all edges fill out this table) giving a
runtime bound of O(|E| log |V |).

This content is protected and may not be shared, uploaded, or distributed. 8 of 12



CS 170, Spring 2025 Homework 5 (Optional) N. Haghtalab and J. Wright

8 Minimum ∞-Norm Cut

In the Minimum Infinity-Norm Cut problem, you are given a connected undirected graph
G = (V,E) with positive edge weights we, and you are asked to find a cut in the graph where
the largest edge in the cut is as small as possible (note that there is no notion of source or
target; any cut with at least one node on each side is valid).

Solve this problem in O(|E|log|V |+ |V |+ |E|) time. Please provide an algorithm description,
a proof of correctness, and a runtime analysis.

Hint: Minimum Spanning Tree does not require edge weights to be positive.

Solution: Algorithm: First, negate all the edge weights in G, and pass this new graph to
Kruskal’s minimum spanning tree algorithm; this will give us a maximum spanning tree of
the original graph. Remove the smallest-weight edge in this maximum spanning tree, and
return the cut induced by its removal.

Proof of Correctness: First note that we correctly find a maximum spanning tree of the
graph, since maxtree T

∑
e∈T we = mintree T

∑
e∈T −we. It is similarly easy to see that we find

a minimum infinity-norm cut in the maximum spanning tree of the graph (using any other
edges from the spanning tree could not decrease the cut, since we used only the smallest
possible edge).

It only remains to show that any cut of the nodes in the graph has exactly the same infinity
norm in the graph overall as in the maximum spanning tree; this will prove the correctness
of our algorithm (since we have already proven its correctness in the tree). To see this, we
will use the cut property for maximum spanning trees (which follows immediately from the
cut property for minimum spanning trees, applied to the negated graph). This property is:
for any cut in the graph, its largest edge (or one of its largest edges, if the largest edge is not
unique) must be contained in the maximum spanning tree. Since the infinity norm of the
cut is equal to the weight of its largest edge, this means that the infinity norm of the cut in
the tree is at least its infinity norm in the graph; it is also at most the infinity norm in the
graph, since no edges exist in the tree which do not exist in the graph.

Runtime Analysis: Creating a new graph with every edge negated takes O(|V |+ |E|) time.
Once we have the maximum spanning tree, the smallest-weight edge can be found with a
simple O(|E|) time search; once it is removed, the nodes in the two resulting components can
be enumerated with a O(|V | + |E|) time traversal. So overall, we have taken linear time to
convert this problem to an MST problem.

We can then run Kruskal’s algorithm in O(|E|log|V |) time to find the MST. Finding the
smallest-weight cut requires traversing over all edges. Hence, the final runtime isO(|E|log|V |+
|V |+ |E|).

Alternative solution

Sort the array of edge weights and binary search for the largest edge in the cut. For an edge
with weight wm, consider G′, the graph obtained by keeping only the edges from E with
weight ≤ wm. If G′ is connected, then the answer is ≥ we. Otherwise, the answer is < wm.

This content is protected and may not be shared, uploaded, or distributed. 9 of 12



CS 170, Spring 2025 Homework 5 (Optional) N. Haghtalab and J. Wright

Once you find the ∞ norm we of the cut, you can recover the cut by taking any connected
component and its complement after removing all edges of weight >= we. Overall runtime
is O(|E|log|V |).

This content is protected and may not be shared, uploaded, or distributed. 10 of 12



CS 170, Spring 2025 Homework 5 (Optional) N. Haghtalab and J. Wright

9 Penguin Fishing

PNPenguin has just had his 170th birthday, and to celebrate this great milestone, the pen-
guins are planning a feast to celebrate PNPenguin’s birthday for this year and future years,
and they need to catch fish to serve at this feast.

The PNPenguins live in Antarctica, which can be represented as N ice floes and M two-
way bridges each connecting two ice floes. Some of the ice floes contain fish. The penguins
can walk much faster than they can swim, and their goal is to station a certain number of
penguins in various places, so that they can catch all of the fish. Hiring penguin fishermen
is expensive, so the penguins want to catch all the fish using as few penguin fishermen as
possible. Each penguin fisherman can only travel between ice floes connected by a bridge;
however, they will be able to catch all the fish in the ice floes they can travel between.

Unfortunately, due to global warming, the penguins’ habitat is slowly melting. For each of
the next N years, an ice floe mi will melt. When an ice floe melts, if the ice floe has fish, the
fish at that ice floe will remain, but all of the bridges connecting that ice floe to other floes
will disappear. Knowing this, write an efficient algorithm asymptotically faster than O(N2)
to find the number of penguins pi needed to catch all the fish in year i for each of the next
N years.

Please provide an algorithm description, a proof of correctness, and a runtime analysis.

Solution:

Algorithm: Process the years in reverse order, and use a union-find data structure. Represent
each ice floe as a vertex, initially with no edges in the graph. For every year, in reverse order,
go through all the edges connecting the vertex mi, as from our standpoint, these edges
will now be added back to the graph, instead of disappearing. Each time we add an edge
back, we will unite the two components using union-find, if they weren’t already in the same
component.

Keep a running count c of the number of components in the graph with fish. Initially, this
will be the total amount of ice floes containing fish. Additionally, we store a boolean array
f where f [i] represents whether or not component i contains fish, only applicable for i that
are the parent of their respective component. Every time we add an edge to the graph with
our union-find data structure, we run into one of several cases, based on the vertices that the
edge connects:

1. The two vertices are already in the same component. In this case, we do nothing

2. The two vertices are not in the same component, and neither components contain fish.
In this case, we also do nothing

3. The two vertices are not in the same component, and one of the two components contain
fish. In this case, we make sure to update the f [parent(newcomponent)] to be true, if
it wasn’t already

4. The two vertices are not in the same component, and both components contain fish. In
this case, we decrement c by one.

This content is protected and may not be shared, uploaded, or distributed. 11 of 12



CS 170, Spring 2025 Homework 5 (Optional) N. Haghtalab and J. Wright

Before each year, add the current value of c to an array. After all N years, reverse this array,
and return it as the answer.

Proof of Correctness: The minimum number of penguins we need to send is equivalent to
the number of connected components in the graph with at least one fish. This is sufficient,
because if we send one penguin to each such component, we will definitely be able to catch all
the fish, and it’s necessary, because if we leave at least one connected component with nonzero
fish without any penguins, it will be impossible to catch any of the fish in that component. We
look ”backwards in time” to simulate the melting, as removing edges is difficult to simulate
with union-find (it’d require a persistent union-find data structure, which is out of scope
for the course), but adding edges is easier. Before adding any edges, every vertex will be
isolated, so the answer will simply be the amount of total vertices with fish, as we’ll have to
send a penguin to each one. For future weeks, we only care about the new edges that we’re
adding in by adding a new vertex, and for each such edge, it’ll only change the value c if both
components that we’re uniting have fish.

Runtime: Union-find takes O(log(n)) per find operation, and O(log(n)) per union operation,
and we’ll do this max(T,M) times. We’ll also process each of the N vertices once at the
start, making the total runtime O(N +M log(N)).

This content is protected and may not be shared, uploaded, or distributed. 12 of 12


	Study Group
	Three-Legged Race
	Counting Shortest Paths
	Preventing Conflict
	Twenty Questions
	Rigged Tournament
	Adding Many Edges At Once
	Minimum -Norm Cut
	Penguin Fishing

