1 Study Group

List the names and SIDs of the members in your study group. If you have no collaborators, write “none”.

2 Arbitrage

Shortest-path algorithms can also be applied to currency trading. Suppose we have n currencies $C = \{c_1, c_2, \ldots, c_n\}$: e.g., dollars, Euros, bitcoins, dogecoins, etc. For any pair i, j of currencies, there is an exchange rate $r_{i,j}$: you can buy $r_{i,j}$ units of currency c_j at the price of one unit of currency c_i. Assume that $r_{i,i} = 1$ and $r_{i,j} \geq 0$ for all i, j.

The Foreign Exchange Market Organization (FEMO) has hired Oski, a CS170 alumnus, to make sure that it is not possible to generate a profit through a cycle of exchanges; that is, for any currency $i \in C$, it is not possible to start with one unit of currency i, perform a series of exchanges, and end with more than one unit of currency i. (That is called arbitrage.)

More precisely, arbitrage is possible when there is a sequence of currencies c_{i_1}, \ldots, c_{i_k} such that $r_{i_1,i_2} \cdot r_{i_2,i_3} \cdot \ldots \cdot r_{i_{k-1},i_k} \cdot r_{i_k,i_1} > 1$. This means that by starting with one unit of currency c_{i_1} and then successively converting it to currencies $c_{i_2}, c_{i_3}, \ldots, c_{i_k}$ and finally back to c_{i_1}, you would end up with more than one unit of currency c_{i_1}. Such anomalies last only a fraction of a minute on the currency exchange, but they provide an opportunity for profit.

We say that a set of exchange rates is arbitrage-free when there is no such sequence, i.e. it is not possible to profit by a series of exchanges.

(a) Give an efficient algorithm for the following problem: given a set of exchange rates $r_{i,j}$ which is arbitrage-free, and two specific currencies s, t, find the most advantageous sequence of currency exchanges for converting currency s into currency t.

Hint: represent the currencies and rates by a graph whose edge weights are real numbers.

(b) Oski is fed up of manually checking exchange rates, and has asked you for help to write a computer program to do his job for him. Give an efficient algorithm for detecting the possibility of arbitrage. You may use the same graph representation as for part (a).

Solution:

(a) Main Idea:
We represent the currencies as the vertex set V of a complete directed graph G and the exchange rates as the edges E in the graph. Finding the best exchange rate from s to t corresponds to finding the path with the largest product of exchange rates. To turn this into a shortest path problem, we weigh the edges with the negative log of each exchange rate. Since edges can be negative, we use Bellman-Ford to help us find this shortest path.

Pseudocode:
function BestConversion(s, t)

G ← Complete directed graph, c_i as vertices, edge lengths $l = \{-\log(r_{i,j}) \mid (i, j) \in E\}$.

dist, prev ← BellmanFord(G, l, s)

return Best rate: $e^{-dist[t]}$, Conversion Path: Follow pointers from t to s in prev

Proof of Correctness:
To find the most advantageous ways to converts c_s into c_t, you need to find the path $c_{i_1}, c_{i_2}, \ldots, c_{i_k}$ maximizing the product $r_{i_1,i_2} r_{i_2,i_3} \ldots r_{i_{k-1},i_k}$. This is equivalent to minimizing the sum $\sum_{j=1}^{k-1} (-\log r_{i_j,i_{j+1}})$. Hence, it is sufficient to find a shortest path in the graph G with weights $w_{ij} = -\log r_{ij}$. Because these weights can be negative, we apply the Bellman-Ford algorithm for shortest paths to the graph, taking s as origin. The correctness of the entire algorithm follows from the proof of correctness of Bellman-Ford.

Runtime:
Same as runtime of Bellman-Ford, $O(|V|^3)$ since the graph is complete.

(b) Main Idea:
Just iterate the updating procedure once more after $|V|$ rounds. If any distance is updated, a negative cycle is guaranteed to exist, i.e. a cycle with $\sum_{j=1}^{k-1} (-\log r_{i_j,i_{j+1}}) < 0$, which implies $\prod_{j=1}^{k-1} r_{i_j,i_{j+1}} > 1$, as required.

Pseudocode: This algorithm takes in the same graph constructed in the previous part.

1: function HasArbitrage(G)

2: dist, prev ← BellmanFord(G, l, s)

3: dist* ← Update all edges one more time

4: return True if for some v, $dist[v] > dist^*[v]$

Proof of Correctness:
Same as the proof for the modification of Bellman-Ford to find negative edges.

Runtime:
Same as Bellman-Ford, $O(|V|^3)$.

Note:
Both questions can be also solved with a variation of Bellman-Ford’s algorithm that works for multiplication and maximizing instead of addition and minimizing.

3 Money Changing.

Fix a set of positive integers called denominations x_1, x_2, \ldots, x_n (think of them as the integers 1, 5, 10, and 25). The problem you want to solve for these denominations is the following:

Given an integer A, express it as

$$A = \sum_{i=1}^{n} a_i x_i$$

for some nonnegative integers $a_1, \ldots, a_n \geq 0$.
(a) Under which conditions on the denominations x_i are you able to do this for all integers $A > 0$?

(b) Suppose that you want, given A, to find the nonnegative a_i’s that satisfy $A = \sum_{i=1}^{n} a_i x_i$, and such that the sum of all a_i’s is minimal —that is, you use the smallest possible number of coins. Define a greedy algorithm for this problem. (Your greedy algorithm may not necessarily solve the problem, i.e., it may give a suboptimal answer on some inputs)

(c) Show that the greedy algorithm finds the optimum a_i’s in the case of the denominations $1, 5, 10$, and 25, and for any amount A.

(d) Give an example of a denomination where the greedy algorithm fails to find the optimum a_i’s for some A. (Do you know of an actual country where such a set of denominations exists?)

Solution:

(a) A can be expressed as a linear combination of the x_i if and only if $x_i = 1$ for some i. If one of your denominations x_i is 1, you will certainly be able to express every integer A as $\sum_{i=1}^{n} a_i x_i$ for some nonnegative integers a_1, \ldots, a_n. Conversely, in order to express $A = 1$ as a linear combination, you must have $x_i = 1$ for some i.

(b) Order your denominations such that $x_1 > x_2 > \cdots > x_n$. Then the greedy algorithm for this problem would be: Given A, let a_1 be the largest integer such that $a_1 x_1 \leq A$. If $A - a_1 x_1 > 0$, let a_2 be the largest integer such that $a_2 x_2 \leq A - a_1 x_1$. If you have nothing left over after doing this for $i = 1, \cdots, n$, then $A = \sum_{i=1}^{n} a_i x_i$.

(c) Since 1 divides 5 and 5 divides 10, it is clear that if we have a case in which the greedy algorithm would not find the optimal solution, it must involve 25, i.e. A must be greater than 25.

Note that $x_4 = 1$ cent, $x_3 = 5$ cent, and so on.

Assume the greedy algorithm does not find the optimal solution for A, $A > 25$.

Then $A = \sum_{i=1}^{4} a_i x_i = \sum_{i=1}^{4} b_i x_i$ and $\sum_{i=1}^{4} a_i > \sum_{i=1}^{4} b_i$, where the a_i were determined by the greedy algorithm and the b_i are optimal in that $\sum_{i=1}^{4} b_i$ is minimal.

W.l.o.g. $a_4 = b_4$ [since $a_4 \leq 4$ any change of the number of 1 cent coins must occur in 5 unit steps to give the same sum—this is obviously worse than changing b_3]. Also, since the other denominations are 5,10,25, the number of 1 cent coins that the optimal algorithm takes must be $A \mod 5$, which is the number of 1 cent coins our greedy algorithm takes too. In addition to that note that $a_3 \leq 1$.

By the above considerations we must have $a_1 > b_1$. Why? Because our greedy algorithm can certainly not pick less 25-cent coins than the optimal algorithm. The first thing our greedy algorithm does is pick as many 25-cent coins as possible! Also, a_1 is not equal to b_1, because if it were, then we know that our greedy algorithm correctly picks the optimal set of coins until $A = 24$ anyway (since 1 divides 5 and 5 divides 10.)

So, let $x := a_1 - b_1$. Note that x is a positive number.
For a_2, b_2 have three cases to consider: $a_2 = b_2$, $a_2 > b_2$ and $a_2 < b_2$.

Let’s set $y := a_2 - b_2$.

Now, remember that $a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4 = b_1x_1 + b_2x_2 + b_3x_3 + b_4x_4$. We can rewrite this as $b_3 = 5x + 2y + a_3$, using the actual values of x_i, the fact that $a_4 = b_4$, and our definitions of x and y.

Thus the number of coins changes by $\sum_{i=1}^{4} b_i - \sum_{i=1}^{4} a_i = 4x + y$. If we can show that this number is positive, this is a contradiction and we are done, since we expected $\sum_{i=1}^{4} a_i > \sum_{i=1}^{4} b_i$.

In cases 1 and 2, x and y are ≥ 0. Therefore $4x + y$ is clearly positive.

In case 3, y is negative. But, as we have to ensure that $b_3 = 5x + 2y + a_3$ is ≥ 0 and we know that a_3 is at most 1, we have $y \geq -\frac{2}{5}x - \frac{1}{2}$. Hence $4x + y \geq \frac{3}{2}x - \frac{1}{2}$ and it is again positive.

(d) A couple of real world examples:

- The United States of America 1875 – 1878 had 25 cent, 20 cent, 10 cent and 5 cent coins (and no 40 cent coins). To get 40 cents, the greedy algorithm gives 25 — 10 — 5, i.e. three coins, whereas the minimum is two coins (20 — 20)

- Prior to the change to the decimal system, Britain and many of her colonies had the following system:

 1 shilling = 12 pence
 1 florin = 2 shillings = 24 pence
 1 half-crown = 2.5 shillings = 30 pence

 So to get 36 pence, the greedy algorithm would take a half-crown and six pennies (i.e. seven coins), whereas one florin and one shilling (two coins) would be the minimal solution

- Cyprus in 1901 had 18 Piastres, 9 Piastres, 4.5 Piastres and 3 Piastres Silver coins and 1 Piastre, 0.5 Piastre and 0.25 Piastre Bronze coins.

 To get 6 Piastres, the greedy algorithm would take 4.5, 1 and 0.5 Piastre coins (three coins), whereas the minimum would be two 3 Piastre coins

- Persia under Muzaffar–ed–din Shah (1896 – 1907) had the following coins: 2 Tomans (= 400 Shahi), 1 Toman (= 200 Shahi), 0.5 Toman (= 100 Shahi), 4 Kran (= 80 Shahi), 0.25 Toman (= 50 Shahi), 2 Kran (= 40 Shahi), 1 Kran (= 20 Shahi), 0.5 Kran (= 10 Shahi), 0.25 Kran (= 5 Shahi), 3 Shahi, 2 Shahi and 1 Shahi.

 To get the sum of 160 Shahi, the greedy algorithm would take a 100 Shahi, a 50 Shahi and a 10 Shahi coin (three coins), whereas the minimum would be two 80 Shahi coins

4 Bounded Bellman-Ford (Optional)

You may submit your solution to this problem if you wish it to be graded, but it will be worth no points.
Modify the Bellman-Ford algorithm so that given a graph \(G \), nodes \(s \) and \(t \), and an integer \(k \), it finds the weight of the lowest-weight path from \(s \) to \(t \) with the restriction that the path must have at most \(k \) edges.

Solution: The obvious instinct is to run the outer loop of Bellman-Ford for \(k \) steps instead of \(|V| - 1\) steps. However, what this does is to guarantee that all shortest paths using at most \(k \) edges would be found, but some shortest paths using more than \(k \) edges might also be found. For example, consider a path on 10 nodes starting at \(s \) and ending at \(t \), and set \(k = 2 \). If Bellman-Ford processes the vertices in the order of their increasing distance from \(s \) (we cannot guarantee beforehand that this will not happen) then just one iteration of the outer loop finds the shortest path from \(s \) to \(t \), which contains 10 edges, as opposed to our limit of 2. We therefore need to limit Bellman-Ford so that results computed during a given iteration of the outer loop are not used to improve the distance estimates of other vertices during the same iteration.

We therefore modify the Bellman-Ford algorithm to keep track of the distances calculated in the previous iteration.

Algorithm 1 Modified Bellman-Ford

Require: Directed Graph \(G = (V, E) \); edge lengths \(l_e \) on the edges, vertex \(s \in V \), and an integer \(k > 0 \).

Ensure: For all vertices \(u \in V \), \(\text{dist}[u] \), which is the length of path of lowest weight from \(s \) to \(u \) containing at most \(k \) edges.

\[
\begin{array}{l}
\text{for } v \in V \text{ do} \\
\quad \text{dist}[u] \leftarrow \infty \\
\quad \text{new-dist}[u] \leftarrow \infty \\
\text{dist}[s] \leftarrow 0 \\
\text{new-dist}[s] \leftarrow 0 \\
\text{for } i = 1, \ldots, k \text{ do} \\
\quad \text{for } v \in V \text{ do} \\
\quad \quad \text{previous-dist}[v] \leftarrow \text{new-dist}[v] \\
\quad \text{for } e = (u, v) \in E \text{ do} \\
\quad \quad \text{new-dist}[v] \leftarrow \min(\text{new-dist}[v], \text{previous-dist}[u] + l_e)
\end{array}
\]

Assume that at the beginning of the \(i \)th iteration of the outer loop, \(\text{new-dist}[v] \) contains the lowest possible weight of a path from \(s \) to \(v \) using at most \(i - 1 \) edges, for all vertices \(v \). Notice that this is true for \(i = 1 \), due to our initialization step. We will now show that the statement also remains true at the beginning of the \((i + 1)\)th iteration of the loop. This will prove the correctness of the algorithm by induction. We first consider the case where there is no path from \(s \) to \(v \) of length at most \(i \). In this case, for all vertices \(u \) such that \((u, v) \in E\), we must have \(\text{new-dist}[u] = \infty \) at the beginning of the loop. Thus, \(\text{new-dist}[v] = \infty \) at the end of the loop as well. Now, suppose that there exists a path (not necessarily simple) of length at most \(i \) from \(s \) to \(v \), and consider such a path of smallest possible weight \(w \). We want to show that \(\text{new-dist}[v] = w \).

Let \(u \) be the vertex just before \(v \) on this path. By the induction hypothesis, at the end of the loop on line \(\square \) \(\text{previous-dist}[u] \) stores the weight of the lowest weight path of length
at most $i - 1$ from s to u, so that when the edge (u, v) is proceed in the loop on line 9, we get $\text{new-dist}[v] \leq w$.

Now, we observe that at the end of the loop on line 9 we have

$$\text{new-dist}[v] = \min \left(\text{previous-dist}[v], \min_{u: (u, v) \in E} (\text{previous-dist}[u] + l_{(u, v)}) \right).$$

Note that by the induction hypothesis, each term in the minimum expression represents the length of a (not necessarily simple) path from s to v of length at most i. Thus, in particular, none of these terms can be smaller than w, so that $\text{new-dist}[v] \geq w$. Combining with $\text{new-dist}[v] \leq w$ obtained above, we get $\text{new-dist}[v] = w$ as required.