CS 170 HW 7

Due 2020-3-9, at 10:00 pm

1 Study Group

List the names and SIDs of the members in your study group. If you have no collaborators, you must explicitly write “none”.

2 DP solution writing guidelines

Try to follow the following 3-part template when writing your solutions.

- Define a function $f(\cdot)$ in words, including how many parameters are and what they mean, and tell us what inputs you feed into f to get the answer to your problem.
- Write the “base cases” along with a recurrence relation for f.
- Prove that the recurrence correctly solves the problem.
- Analyze the runtime and space complexity of your final DP algorithm? Can the bottom-up approach to DP improve the space complexity?

3 No Backtracking

Let $G = (V, E)$ be a simple, undirected, and unweighted n-vertex graph, and let A_G be its adjacency matrix, defined as follows:

$$A_G[i, j] = \begin{cases}
1 & \text{if there is an edge between } i \text{ and } j \\
0 & \text{otherwise}
\end{cases}$$

We call a sequence of vertices $W = (u_0, u_1, \ldots, u_\ell)$ a walk if for every $i < \ell$, $\{u_i, u_{i+1}\}$ is an edge in E, and we call ℓ the length of W. Call a walk nonbacktracking if for every $i < \ell - 1$, $u_i \neq u_{i+2}$, i.e., the walk does not traverse the same edge twice in a row. In this problem, we will see a dynamic programming-based algorithm to compute the number of length-ℓ nonbacktracking walks in G between every pair of vertices.

(a) Prove that $A_G^{\ell}[i, j] = \# \text{ of length-} \ell \text{ walks from } i \text{ to } j$.

(b) Let I be the identity matrix (diagonal matrix of all-ones), D_G be the degree matrix of G, i.e., the matrix defined as follows:

$$D_G[i, j] := \begin{cases}
\text{degree}(i) & \text{if } i = j \\
0 & \text{otherwise}
\end{cases}$$
and let $NB^{(\ell)}$ be the matrix such that $NB^{(\ell)}[i,j]$ contains the number of length-ℓ non-backtracking walks between i and j. Prove that $NB^{(\ell)}$ satisfies the following recurrence relationship.

$$\begin{align*}
NB^{(1)} &= A_G \\
NB^{(2)} &= A_G^2 - D_G \\
NB^{(\ell)} &= NB^{(\ell-1)} \cdot A_G - NB^{(\ell-2)} \cdot (D_G - I).
\end{align*}$$

(c) Given T as input, give an $O(Tn^{\omega})$-time dynamic programming-based algorithm to output $NB^{(T)}$ where n^ω is the time it takes to multiply two $n \times n$ matrices and $\omega \geq 2$.

(d) (Cool problem but worth no points) Given T, give a $O(n^3 \log T)$-time algorithm to output $NB^{(T)}$.

Solution:

(a) This can be proved by induction. Easy to see when $\ell = 1$. Suppose the statement is true for $\ell - 1$.

$$\begin{align*}
\text{# of length-ℓ } u \to v \text{ walks} &= \sum_{w \in V(G)} \text{# of length-$\ell - 1$ } u \to w \text{ walks} \cdot A_G[w,v] \\
&= \sum_{w \in V(G)} A_G^{\ell-1}[u,w] \cdot A_G[w,v] \\
&= A_G^{\ell-1} \cdot A_G[u,v] \\
&= A_G^{\ell}[u,v].
\end{align*}$$

(b) The case for $\ell = 1$ is immediate, and the case for $\ell = 2$ follows from the observation that all the walks which backtrack are recorded on the diagonal. Any length-ℓ nonbacktracking walk can be broken into 3 pieces (a) a nonbacktracking walk of length $\ell - 2$, followed by (b) a nonbacktracking step, followed by (c) another nonbacktracking step. On the other hand, $NB^{(\ell-1)} \cdot A_G$ records walks that are of the form (a) a nonbacktracking walk of length $\ell - 2$, followed by (b) a nonbacktracking step, followed by (c) any step. The walks of the second kind can be partitioned into length-ℓ nonbacktracking walks and walks that (a) take a length-$\ell - 2$ nonbacktracking walk, (b) take a nonbacktracking step, (c) backtrack along the step just taken. If the nonbacktracking walk from phase (a) ends at u, there are exactly $\text{degree}(u) - 1$ ways to perform phases (b) and (c), and thus these walks are recorded by the matrix $NB^{(\ell-2)} \cdot (D_G - I)$.

(c) For our DP algorithm, we store a length T array of $n \times n$ matrices, where entry i of this array is meant to contain $NB^{(i)}$. Computing $NB^{(i)}$ from the respective subproblems it breaks into by the recurrence in the previous part takes constant number of matrix multiplication and addition operations. Since there are T subproblems, the computation takes $O(Tn^{\omega})$ time.

(d) For $\ell \geq 3$, observe that

$$\begin{bmatrix}
NB^{(\ell+1)} \\
NB^{(\ell)}
\end{bmatrix} = \begin{bmatrix}
NB^{(\ell)} & NB^{(\ell-1)}
\end{bmatrix} \cdot \begin{bmatrix}
A_G \\
-(D_G - I)
\end{bmatrix} = \begin{bmatrix}
I \\
0
\end{bmatrix}.$$
4 Walks in an infinite tree

Let K_{d+1} be the undirected and unweighted complete graph on vertex set $\{0, \ldots, d\}$. Let T_d be the undirected infinite tree with vertex and edge set

$$\begin{align*}
V_d &= \{W : W \text{ is a nonbacktracking walk starting at } 0 \text{ in } K_{d+1}\} \\
E_d &= \{\{W, W'\} : W' = (W, u) \text{ for some } u \in K_{d+1}\}.
\end{align*}$$

Let u be an arbitrary vertex of T_d. In this problem, we will see a dynamic programming-based algorithm to compute the number of walks in T_d from u to u.

(a) Let u and v be two vertices in T_d such that $\{u, v\}$ is an edge. Call a walk u, w_1, \ldots, w_t, v from u to v in T_d a first visit walk if $v \notin \{w_1, \ldots, w_t\}$, i.e., if v is visited for the first time in the last step.

Let $F(\ell)$ be the number of length-ℓ first visit walks from u to v. Write a recurrence for $F(\ell)$ and consequently give a dynamic programming algorithm that takes in ℓ as input and produces $F(\ell)$ as output. Your algorithm should run in $O(\ell^2)$ time.

Hint: Suppose in the first step of a $u \rightarrow v$ first visit walk, u steps to $v' \neq v$, the walk can be decomposed into 3 parts: (1) a single step from u to v', (2) a first visit walk from v' to u, (3) a first visit walk from u to v.

(b) We call a walk u, w_1, \ldots, w_t, u from u to u a first revisit walk if $u \notin \{w_1, \ldots, w_t\}$, i.e., if the only times u is visited are at the start and the end. Let $G(\ell)$ be the number of length-ℓ first visit walks from u to u. Give an $O(\ell^2)$-time algorithm that takes in ℓ as input and computes $G(\ell)$.

Hint: You may want to use the algorithm from part (??).

(c) Let u be a vertex in T_d and let $H(\ell)$ denote the number of walks from u to u. Write a recurrence for $H(\ell)$ and consequently give a dynamic programming algorithm that takes
in ℓ as input and produces $H(\ell)$ as output. Your algorithm should run in $O(\ell^2)$ time. Your recurrence may also involve the function G defined in part (??).

Solution:

(a) There is exactly one first-visit walk where the first step is to vertex v, and this first visit walk has length-1. Moreover it is the only length-1 first visit walk. So $F(1) = 1$. For any walk of length $\ell \geq 2$, we can assume that the first step was from u to vertex $v' \neq v$; in particular, the walk can be broken up into 3 chunks, (a) the first step from u to v', (b) a length-s $v' \rightarrow u$ first-visit walk, (c) a length $\ell - s - 1$ $u \rightarrow v$ first visit walk for any $s \leq \ell - 2$. For fixed s there are $d - 1$ choices in (a), $F(s)$ choices in (b), and $F(\ell - s - 1)$ choices in (c), which leads to the recurrence

$$F(\ell) = \sum_{s=1}^{\ell-2} (d - 1) \cdot F(s) \cdot F(\ell - s - 1).$$

From the above recurrence, a dynamic programming-based algorithm to compute $F(i)$ takes $O(i)$ time to compute $F(i)$ from subproblems, and since there are ℓ subproblems, the runtime is bounded by $O(\ell^2)$.

(b) Any length-ℓ first revisit walk can be broken into (a) a single step from u to v, followed by (b) a length-$\ell - 1$ $v \rightarrow u$ first visit walk. Since there are d choices in (a) and $F(\ell - 1)$ choices in (b), this gives the formula

$$G(\ell) = d \cdot F(\ell - 1).$$

(c) First, note that the empty walk is a $u \rightarrow u$ walk, and hence $H(0) = 1$. For $\ell > 0$, a length-ℓ $u \rightarrow u$ walk can be decomposed into (a) a first revisit walk of length s where $1 \leq s \leq \ell$, followed by (b) a length-$\ell - s$ $u \rightarrow u$ walk. This gives us the recurrence:

$$H(\ell) = \sum_{s=1}^{\ell} G(s) \cdot H(\ell - s).$$

Our algorithm to compute $H(\ell)$ first computes $G(1), G(2), \ldots, G(\ell)$ (which it can in $O(\ell^2)$ time). We then use the above recurrence for $H(\ell)$ to obtain a dynamic programming algorithm, which can compute $H(i)$ from its respective subproblems in $O(i)$ time. As a result, the runtime of the resulting DP algorithm can be bounded by $O(\ell^2)$.

5 GCD annihilation

Let x_1, \ldots, x_n be a list of positive integers given to us as input. We repeat the following procedure until there are only two elements left in the list:

Choose an element x_i in $\{x_2, \ldots, x_{n-1}\}$ and delete it from the list at a cost equal to the greatest common divisor of the undeleted left and right neighbors of x_i.

We wish to make our choices in the above procedure so that the total cost incurred is minimized. Give a poly(n)-time dynamic programming-based algorithm that takes in the list
x_1, \ldots, x_n as input and produces the value of the minimum possible cost as output. You may assume that we are given an $n \times n$ sized array where the i, j entry contains the GCD of x_i and x_j, i.e., you may assume you have constant time access to the GCDs.

Solution: Let $F(a, b)$ be the minimum cost incurred when the input is the subarray between indices a and b. When $b = a + 1$, $F(a, b) = 0$. Suppose in performing the deletion on the $[a, b]$ subarray, element s is the last element to be deleted, the total cost incurred is equal to $F(a, s) + F(s, b) + \gcd(x_a, x_b)$. This tells us that when $b > a + 1$,

$$F(a, b) = \min_{a + 1 \leq s \leq b - 1} F(a, s) + F(s, b) + \gcd(x_a, x_b)$$

Thus, if we turn the above recurrence to a DP algorithm, we get an $O(n^3)$ time algorithm since computing $F(a, b)$ from its subproblems takes up to $O(n)$ time and there are a total of $O(n^2)$ subproblems. The output of our algorithm is $F(1, n)$.

6 Counting Targets

We call a sequence of n integers x_1, \ldots, x_n valid if each x_i is in $\{1, \ldots, m\}$.

(a) Give a dynamic programming-based algorithm that takes in n, m and “target” T as input and outputs the number of distinct valid sequences such that $x_1 + \cdots + x_n = T$. Your algorithm should run in time $O(m^2n^2)$.

(b) Give an algorithm for the problem in part (a) that runs in time $O(mn^2)$.

Hint: let $f(s, i)$ denotes the number of length-i valid sequences with sum equal to s. Consider defining the function $g(s, i) := \sum_{t=1}^{s} f(t, i)$.

Solution:

(a) We use $f(i, s)$ to denote the number of sequences of length i with sum s. $f(s, i)$ is 0 when $i > 0$ and $s \leq 0$, and $f(s, 1)$ is 1 if $1 \leq s \leq m$. Otherwise it satisfies the recurrence:

$$f(s, i) = \sum_{j=1}^{m} f(s - j, i - 1)$$

There are a total of mn^2 subproblems and it takes $O(m)$ time to compute $f(s, i)$ from its subproblems, which leads to an $O(m^2n^2)$ DP algorithm. Our algorithm outputs $f(T, n)$.

(b) We define $g(s, i)$ as follows:

$$g(s, i) = \sum_{j=1}^{s} f(j, i)$$

This is equal to

$$g(s, i) = f(s, i) + \sum_{j=1}^{s-1} f(j, i)$$

$$= \sum_{j=1}^{m} f(s - j, i - 1) + g(s - 1, i)$$

$$= g(s - 1, i - 1) - g(s - m - 1, i - 1) + g(s - 1, i).$$
Using this recurrence, there are still mn^2 subproblems, but it takes $O(1)$ time to compute $g(s, i)$ from its subproblems, and thus there is a $O(mn^2)$ time DP algorithm. We can then obtain $f(T, n)$ via $g(T, n) - g(T - 1, n)$.

7 Box Union

There are n boxes labeled $1, \ldots, n$, and initially they are each in their own stack. You want to support two operations:

- **put(a, b):** this puts the stack that a is in on top of the stack that b is in.
- **under(a):** this returns the number of boxes under a in its stack.

The amortized time per operation should be the same as the amortized time for find(\cdot) and union(\cdot, \cdot) operations in the union find data structure.

Hint: use “disjoint forest” and augment nodes to have an extra field z stored. Make sure this field is something easily updateable during “union by rank” and “path compression”, yet useful enough to help you answer under(\cdot) queries quickly. It may be useful to note that your algorithm for answering under queries gets to see the z values of all nodes from the query node to its tree’s root if you do a find.

Solution: At any given time, let $u(s)$ denote the number of boxes under box s. In the disjoint forest union, let $z(s)$ denote the augmented field stored at node s. If s is a root, we additionally store a parameter $size(s)$, which represents the total number of boxes in a given stack. At any given time, we will maintain the invariant that when s is a root node, $z(s)$ is equal to $u(s)$, and otherwise $z(s)$ is equal to $u(s) - u(p(s))$ where $p(s)$ denotes the parent of s in the disjoint forest data structure. To obtain the value of $u(s)$, we perform a find(s) operation, and output the sum of $z(s')$ for s' in the path between s and the root r; this sum can be verified to equal $u(s)$. When the data structure is initialized, setting all $z(s)$ to 0, along with setting $size(s)$ to 1 maintains the invariant. Whenever a union operation is performed, one root s is made a child of another root s' — in this case, we

1. if s' is in the “upper” stack, update $z(s')$ to $z(s') + size(s)$ and update $z(s)$ to $z(s) - z(s')$;
 otherwise if s' is in the “lower” stack, keep $z(s')$ unchanged and update $z(s)$ to $z(s) + size(s') - z(s')$,
2. replace $size(s')$ with $size(s) + size(s')$.

Before a path compression operation is performed, we can compute the value of $u(s)$ for all s whose parent is updated to root r and replace each $z(s)$ with $u(s) - z(r)$.