CS 170, Fall 2024 Homework 7 P. Raghavendra and S. Garg

CS 170 Homework 7

Due Monday 10/21/2024, at 10:00 pm (grace period until 11:59pm)

1 Study Group

List the names and SIDs of the members in your study group. If you have no collaborators,
write “none”.

DP Solution Writing Guidelines:

When writing your solutions to DP problems only, please follow the 4-part solution template
below (unless specified otherwise):

1. Define a function f(-) in words. Make sure to include how many parameters there are
and what they mean, and tell us what inputs you feed into f to get the answer to your
problem.

2. Write the recurrence relation for f, as well as the “base cases”.

3. Prove that the recurrence correctly solves the problem. In almost all cases, you will
want to use induction to prove the correctness of a DP algorithm.

4. Analyze the runtime and space complexity of your final DP algorithm. Note that
the top-down and bottom-up approaches to DP have the same runtime complexity;
however, bottom-up can potentially yield a better space complexity.

This content is protected and may not be shared, uploaded, or distributed. 1 of 10

CS 170, Fall 2024 Homework 7 P. Raghavendra and S. Garg

2 Egg Drop

You are given m identical eggs and an n story building. You need to figure out the highest
floor b € {0,1,2,...n} that you can drop an egg from without breaking it. Each egg will
never break when dropped from floor b or lower, and always breaks if dropped from floor
b+ 1 or higher. (b = 0 means the egg always breaks). Once an egg breaks, you cannot use it
any more. However, if an egg does not break, you can reuse it.

Let f(n,m) be the minimum number of egg drops that are needed to find b (regardless of the
value of b).

(a) Find f(1,m), f(0,m), f(n,1), and f(n,0). Briefly explain your answers.
Hint: use oo to denote that it is impossible to find b.

(b) Consider dropping an egg at floor h when there are n floors and m eggs left. Then, it
either breaks, or doesn’t break. In either scenario, determine the minimum remaining
number of egg drops that are needed to find b in terms of f(-,-), n, m, and/or h.

(c¢) Find a recurrence relation for f(n,m).

Hint: whenever you drop an egg, call whichever of the eqg breaking/not breaking leads
to more drops the “worst-case event”. Since we need to find b regardless of its value,
you should assume the worst-case event always happens.

(d) If we want to use dynamic programming to compute f(n,m) given n and m, in what
order do we solve the subproblems?

(e) Based on your responses to previous parts, analyze the runtime complexity of your DP
algorithm.

(f) Analyze the space complexity of your DP algorithm.

(g) Is it possible to modify your algorithm above to use less space? If so, describe your
modification and re-analyze the space complexity. If not, briefly justify.

Solution:
(a) We have that:

e f(1,m) = 1, since we can drop the egg from the single floor to determine if it
breaks on that floor or not.

e f(0,m) =0, since there is only one possible value for b.

e f(n,1) = n, since we only have one egg, so the only strategy is to drop it from
every floor, starting from floor 1 and going up, until it breaks.

e f(n,0) = oo for n > 0, since the problem is unsolvable if we have no eggs to drop.

(b) If the egg breaks, we only need to consider floors 1 to A — 1, and we have m — 1 eggs
left since an egg broke, in which case we need f(h — 1,m — 1) more drops. If the egg
doesn’t break, we only need to consider floors h 4+ 1 to n, and there are m eggs left, so
we need f(n — h,m) more drops.

This content is protected and may not be shared, uploaded, or distributed. 2 of 10

CS 170, Fall 2024 Homework 7 P. Raghavendra and S. Garg

()

(e)

(f)

(2)

The recurrence relation is

f(n,m) =1+ min max{f(h—1,m—1), f(n—h,m)}.
he{l..n}

When we drop an egg at floor h, in the worst case, we need max{f(h—1,m—1), f(n—
h,m)} drops. Then, the optimal strategy will choose the best of the n floors, so we
need minyeyy, py max{f(h —1,m — 1), f(n — h,m)} more drops.

We solve the subproblems in increasing order of m,n, i.e.:

for j in range(m+1):
for i in range(n+1):
solve f(i, j)

We solve nm subproblems, each subproblem taking O(n) time. Thus, the overall run-
time is O(n?m).
The only thing we have to store is the DP array f, which contains nm elements. Thus,

the overall space complexity is O(nm).

Yes, it is possible! Notice that in our recurrence relation in part (c), we only need the
values of f(-,m) and f(-,m—1). So we can just store the last two “columns” computed
so far. The pseudocode for this would look approximately as follows:

def eggdrop(n, m):
if m == 0: # base case for m=0
return float("inf")
if n ==
return O

curr = [i for i in range(n+1)] # base case for m=1

for j in range(2, m+1):
prev = copy(curr)

for i in range(j+1):

curr[i] =1
for i in range(j+1, n+1):
curr[i] = 1 + min([

max (prev[h-1], curr[i-h])
for h in range(1, i+1)

D

return curr[n]

This content is protected and may not be shared, uploaded, or distributed. 3 of 10

CS 170, Fall 2024 Homework 7 P. Raghavendra and S. Garg

3 Counting Targets

We call a sequence of n integers z1,...,z, valid if each z; is in {1,...,m}.

(a) Give a dynamic programming-based algorithm that takes in n,m and “target” T as
input and outputs the number of distinct valid sequences such that z; +---+z, =T.
Your algorithm should run in time O(m?n?). Note that you can assume T < mn since
no valid sequences sum to more than mn.

Please provide a 4-part solution.

(b) (Extra Credit) Give an algorithm for the problem in part (a) that runs in time
O(mn?).

Please provide the subproblem definition, recurrence relation (including
base cases), and the runtime/space complexity analyses. You do not need
to provide a proof of correctness.

Solution:

(a) We use f(s,7) to denote the number of sequences of length ¢ with sum s. f(s,i) is
0 when ¢ > 0 and s < 0, and f(s,1) is 1 if 1 < s < m. Otherwise it satisfies the
recurrence:

m
fls,8) =Y fls—ji—1)
j=1
There are a total of mn? subproblems since T' < mn and it takes O(m) time to compute
f(s,4) from its subproblems, which leads to an O(m?n?) DP algorithm. Our algorithm
outputs f(T,n).

(b) Manipulating the recurrence from the previous part, we get:

—_

Flosi) =D fls=ji=1)= 3 fls=1-ji=1)=

j=1 J

3

Il
o

if(s—l—j,i—l) +f(s—1,i—1)— f(s—m—1,i—1) =

7=1
fs=1,0)+ f(s—1,i—1)— f(s—m—1,i—1).

In other words, we're now exploiting the fact that the sums for f(s,i) and f(s — 1,1%)
differ by two terms, and so rather than recompute f(s,i) from scratch we can just
add /subtract these terms from f(s —1,1)

Using this recurrence, there are still mn? subproblems, but it takes O(1) time to com-
pute f(s,i) from its subproblems, and thus there is a O(mn?) time DP algorithm.

This content is protected and may not be shared, uploaded, or distributed. 4 of 10

CS 170, Fall 2024 Homework 7 P. Raghavendra and S. Garg

4 String Shuffling

Let z, y, and z be strings. We want to know if z can be obtained only from z and y by
interleaving the characters from z and y such that the characters in x appear in order and
the characters in y appear in order.

For example, if x = prasad and y = SANJAM, then it is true for z = praSANsadJAM,
but false for z = prasadSANJAMpog (extra characters), z = prasSANJAad (missing
the final M), and z = prasadASNJAM (out of order). How can we answer this query
efficiently? Your answer must be able to efficiently deal with strings with lots of overlap,
such as x* = aaaaaaaaaab and y = aaaaaaaac.

(a) Design an efficient algorithm to solve the above problem, briefly justify its correctness,
and analyze its runtime. You do not need to provide a space complexity analysis (you’ll
do this in the next part!).

(b) Consider a bottom-up approach to our DP algorithm in part (a). Naively if we want
to keep track of every solved sub-problem, this requires O(|z||y|) space (double check
to see if you understand why this is the case). How can we reduce the amount of space
our algorithm uses?

Solution:

(a) First, we note that we must have |z| = |z| + |y|, so we can assume this. Let S(i,j)
be true if and only if the first ¢ characters of x and the first j characters of y can be
interleaved to make the first ¢ 4+ j characters of z. Then = and y can be interleaved to
make z if and only if S(|z|, |y|) is true.

For the recurrence, if S(7,j) is true then either z;4; = x;, zi4; = yj;, or both. In the
first case it must be that the first i — 1 characters of x and the first j characters of y
can be interleaved to make the first i + j — 1 characters of z; that is, S(i — 1, j) must be
true. In the second case S(i,j — 1) must be true. In the third case we can have either
S(i—1,j4) or S(i,j — 1) or both being true. This yields the recurrence:

S(i,7) = (S = 1,5) A = 2ziyg)) V (S(i,5 — 1) Ay = zivj))

The base case is S(0,0) = T'; we also set Vi € [0, |x|], S(i,—1) = Fand Vj € [0, |y|], S(—1,7) =
F'. The running time is O(|z||y|).

Somewhat naively if we’d like an iterative solution, we can keep track of the solutions
to all subproblems with a 2D array where the entry at row 4, column j is S(i, 7). If we
iterate over this array row by row, going left to right, we’ll always be able to fill in the
next entry using values we’ve already computed.

Notice, however, that to compute any entry, we only really need the infomration in the
previous row, and the current row we’re filling out. Thus, rather than holding onto
the entire table, we only need to store the current and previous row, reducing us from
O(m *n) space to O(m) space.

This content is protected and may not be shared, uploaded, or distributed. 5 of 10

CS 170, Fall 2024 Homework 7 P. Raghavendra and S. Garg

(b) We can keep track of the solutions to all subproblems with a 2D array of size |z||y|
where the entry at row ¢, column j is S(i,7). If we iterate over this array row by
row, going left to right, we’ll always be able to fill in the next entry using values we’ve
already computed.

Notice, however, that to compute any entry, we only really need the information in the
previous row, and the current row we’re filling out. Thus, rather than holding onto
the entire table, we only need to store the current and previous row, reducing from
O(|z|ly|) space to O(min(|z|, |y|)) space.

This content is protected and may not be shared, uploaded, or distributed. 6 of 10

CS 170, Fall 2024 Homework 7 P. Raghavendra and S. Garg

5 My Dog Ate My Homework

One morning, you wake up to realize that your dog ate some of your CS 170 homework paper,
which is an x x y rectangular grid of squares. Some of the squares have holes chewed through
them, and you cannot use paper that has a hole in it. You would like to cut the paper into
pieces so as to separate all the tattered squares from all the clean, un-bitten squares. You
want to do this so that you can save as much as your work as possible.

For example, shown below is a 6 x 4 piece of paper where the bitten squares are marked with
*. As shown in the picture, one can separate the bitten parts out in exactly four cuts.

* * * * * *
S * g * * *
11710 * 117110 * CSO* CSO*
1= = | 1|7 = | 1|7 =
k| ok * | ok * | ok k|| sk
k| ok k| ok k| ok k|| ok

*1F] 5

k

S 0| I+

= | 1|7 *

*

*

k

(Each cut is either horizontal or vertical, and of one piece of paper at a time.)
Formally, the problem is as follows:

Input: Dimensions of the paper x x y and an array P[i, j] such that P[i,j] =1
if and only if the ij®" square has holes bitten into it.

Goal: Find the minimum number of cuts needed so that the P[i, j| values of each
piece are either all 0 or all 1.

Design a DP-based algorithm to find the smallest number of cuts needed to separate all the
bitten parts out in O(z3y?) time. For extra credit, try to optimize your algorithm to achieve
a runtime of O((x + y)x?y?).

(a) Define your subproblem.

Hint: try making any arbitrary cut. What two subproblems do you mow have? What
parameters do you need to properly handle recursing on these two resulting subproblems?

(b) Write down the recurrence relation for your subproblems. A fully correct recurrence
relation will always have the base cases specified.

This content is protected and may not be shared, uploaded, or distributed. 7 of 10

CS 170, Fall 2024 Homework 7 P. Raghavendra and S. Garg

()
(d)
(e)

Describe the order in which we should solve the subproblems in your DP algorithm.
What is the runtime complexity of your DP algorithm? Provide a justification.

What is the space complexity of your algorithm? Provide a justification.

Solution:

(a)

(b)

Subproblem Definition: We define Bliy, j1,42,j2] to be the minimum number of
cuts needed to separate the sub-matrix P[i; < i9,j1 < jo] into pieces consisting either
entirely of bitten pieces or clean pieces.

Recurrence Relation:

0, if all entries of Plij...i2,71...Jj2] are equal

B[i17j17i27j2]:min 1+B[i17j17/i1+k7j2]+B[i1+k+17j1)i27j2] for anyk€{17'
1+ Bli1, ji,i2, 1 + k] + Bli1, j1 + k + 1,42, jo] for any k € {1,...

Alternatively, you could have also encapsulated the 0 base case in all single-square
pieces, and determined if a piece was pure via the merging, see below.

Subproblem Order: we solve them in increasing order of (j; — i1 + 1)(j2 — 2 + 1).
In other words, we solve all the smallest subproblems first (e.g. containing one square)
and build our DP array up to our result B[1,m, 1,n|, which covers the entire paper.

Runtime Analysis: Two answers are acceptable: O((z + y)z?y?) and O(23y?)

We have O(z%y?) total subproblems: O(zy) possibilities for (i1,j1), and O(mn) pos-
sibilities for (ig,j2). For each subproblem, we examine up to = possible choices for
horizontal splits, and y possible choices for vertical splits. A single split consideration
will result in two smaller subproblems, which we can assume have already been solved,
so we just need to find the best split, which takes O(z + y) time.

In addition, for a subproblem, we also want to check the base case for if the piece is
“pure” (contains only clean paper, or contains only bitten paper). Brute force checking
this takes O(zy) time, for a total subproblem time of O(zy + (x + y)) = O(zy).

Thus, the overall (accepted) runtime is O(z%y?) - O(zy) = O(z3y?).

However, this O(xy) factor per subproblem can be reduced to O(x + y) (this is not
required to receive full points). We can precompute the purities of every single possible
subrectangle and store it in a table. Brute-force performs the pre-computation in
O(23y3) time, but using prefix sums allows us to do this in just O(zy) time. So to solve
our recurrence relation, if we can determine purity /impurity in O(1) time (after doing
some pre-computation), then we can reach an overall time of O((x + y)z?y?).

Alternatively, we can initialize all min-cut values of single square pieces to be 0. Then,
if it is possible to have some cut such that both resulting pieces have min-cut values of
0, and both resulting pieces are of the same type (clean-only or bitten-only, and we can
take any sample of either and compare them), then we ourself are a pure piece. This

This content is protected and may not be shared, uploaded, or distributed. 8 of 10

g — iy}

2 —ji}

CS 170, Fall 2024 Homework 7 P. Raghavendra and S. Garg

would allow you to avoid the entire pre-computation business as mentioned before, and
still achieve a runtime of O((z + y)z%y?).

(e) Space Complexity Analysis: we have to store the entire DP array for our recurrence
relation to work, so the space complexity is O(z?y?).

This content is protected and may not be shared, uploaded, or distributed. 9 of 10

CS 170, Fall 2024 Homework 7 P. Raghavendra and S. Garg

6 [Coding] More Advanced Dynamic Programming

For this week’s homework, you’ll implement implement some more dynamic programming
algorithms. There are two ways that you can access the notebook and complete the problems:

1. On Datahub: click here/ and navigate to the hw07 folder.

2. On Local Machine: git clone (or if you already cloned it, git pull) from the
coding homework repo,

https://github.com/Berkeley-CS170/cs170-fa24-coding
and navigate to the hwO7 folder. Refer to the README.md for local setup instructions.
Notes:

o Submission Instructions: Please download your completed submission .zip file and
submit it to the Gradescope assignment titled “Homework 7 Coding Portion”.

o Getting Help: Conceptual questions are always welcome on Edstem and office hours;
note that support for debugging help during OH will be limited. 1f you need debugging
help first try asking on the public Edstem threads. To ensure others can help you, make
sure to:

1. Describe the steps you've taken to debug the issue prior to posting on Ed.
2. Describe the specific error you're running into.

3. Include a few small but nontrivial test cases, alongside both the output you ex-
pected to receive and your function’s actual output.

If staff tells you to make a private Ed post, make sure to include all of the above items
plus your full function implementation. If you don’t provide them, we will ask you to
provide them.

e Academic Honesty Guideline: We realize that code for some of the algorithms we ask
you to implement may be readily available online, but we strongly encourage you to not
directly copy code from these sources. Instead, try to refer to the resources mentioned
in the notebook and come up with code yourself. That being said, we do acknowledge
that there may not be many different ways to code up particular algorithms and that
your solution may be similar to other solutions available online.

This content is protected and may not be shared, uploaded, or distributed. 10 of 10

https://datahub.berkeley.edu/hub/user-redirect/git-pull?repo=https://github.com/Berkeley-CS170/cs170-fa24-coding
https://github.com/Berkeley-CS170/cs170-fa24-coding

[31]:

[2]:

hw07
October 25, 2024

1 Dynamic Programming (Part 2!)

In this notebook, we’ll implement the Dynamic Programming algorithms for Edit Distance and
Traveling Salesperson that we saw in class.

1.0.1 If you’re using Datahub:

e Run the cell below and restart the kernel if needed

1.0.2 If you’re running locally:

You’ll need to perform some extra setup. HH4H4 First-time setup * Install Ana-
conda following the instructions here: https://www.anaconda.com/products/distribution *
Create a conda environment: conda create -n cs170 python=3.11 * Activate the envi-
ronment: conda activate cs170 * See for more details on creating conda environments
https://conda.io/projects/conda/en/latest /user-guide/tasks/manage-environments.html * Install
pip: conda install pip * Install jupyter: conda install jupyter

Every time you want to work

e Make sure you've activated the conda environment: conda activate cs170
e Launch jupyter: jupyter notebook or jupyter lab
e Run the cell below and restart the kernel if needed

Install dependencies
'pip install -r requirements.txt --quiet

import otter
assert (otter.__version__ >= "5.5.0"), "Please reinstall the requirements and,,
—restart your kernel."

grader = otter.Notebook("hw07.ipynb")
import numpy.random as random

from networkx import Graph, draw
import string

import pylev

import tqdm

import time

import pickle

from autograder_utils import validate_tour, handle_timeout, profile
test_data = pickle.load(open("public_data.pkl", "rb"))

rng_seed = 42

1.1 Q1: Edit Distance (Global Alignment)

The edit distance problem finds the minimal number of insertions, deletions and substitutions of
characters required to transform one word into another. A big application of this problem is finding
the global alignment between two strings, which is often used in computational biology.

As described in the textbook https: //people.eecs.berkeley.edu/ ™ vazirani/algorithms/chap6.pdf#page=6.

A natural measure of the distance between two strings is the extent to which they can
be aligned, or matched up. Technically, an alignment is simply a way of writing the
strings one above the other. For instance, here are two possible alignments of SNOWY

and SUNNY:
S-NOWY | -SNOW-Y SUNN-Y | SUN-NY Cost: 3 | Cost: 5

The “-” indicates a “gap”; any number of these can be placed in either string. The cost of
an alignment is the number of columns in which the letters differ. And the edit distance
between two strings is the cost of their best possible alignment.

In this problem, you will implement an algorithm to compute the alignment between two strings x
and y, specifically, your algorithm should return the global alignment (as shown above), not just an
integer value denoting the edit distance.

1.1.1 Q1.0 (Optional): The following section will walk you through how to implement
this algorithm.

This section contains ungraded multiple choice questions to test your understanding.
If you like, you may skip to Q1.1 which is the only graded question.

Inputs: - x:string = length n string - y:string = length m string

Algorithm Sketch: 1. Compute the dp subproblems as described in class and the textbook 2. Using
the memoized subproblems from step 1, reconstructing the optimal global alignment

Step 1 can be computed by simply implementing the pseudocode described in the textbook.

Step 2 can be computed using an approach called backtracking which we walk through
here. Recall that all DP have underlying DAG’s where nodes represent subproblems. See
https://people.eecs.berkeley.edu/~ vazirani/algorithms/chap6.pdf#page=9. On this DAG, the DP
algorithm finds the shortest path from (0,0) to (n,m). The length of the shortest path is our
edit distance, and the edges in the path correspond to the global alignment. In our back tracking
algorithm, we start at (n,m) and reconstruct the shortest path to (0,0). Since we start with (n,m)
and end at (0,0), we are back tracking the computations we did in step 1, hence the name.

Sanity Check (ungraded): Suppose we computed the DP matrix on the strings x and y want
to find the edit distance between the first 5 characters of x and the first 6 characters of y. On

[33]:

[]:

[35]:

[]:

[37]:

[]:

the underlying DAG, this corresponds to the shortest path from (0,0) to which node? Give your
answer as a tuple containing 2 integers.

node = (5,6) # SOLUTION
grader.check("s1l (optional)")

Now suppose that we have a way to reconstruct this shortest path, we need to convert the edges on
this path into the actual alignment.

Sanity Check (ungraded): Suppose that our algorithm backtracks to node (i, j) and determines
that the edge (i-1,j)->(i,j) is in this shortest path. So far, the algorithm computed 2 strings
x_align and y_align based on the path from (i,j) to (n,m). These correspond to an alignment
of the substrings x[i:n] and y[j:n]. Given this new edge, what characters should you add to
x_align and y_align? Input your answer choice as list of ints (ie ans = [1] or ans = [1,2]),
where each int represents one of the following choices:

1. add a gap to the start of x_align
2. add a gap to the start of y_align
3. add x[i-1] to the start of x_align
4. add y[j-1] to the start of y_align

Hint: a character must be added to both strings since at each step, len(z_align) == len(y_align).

ans = [2,3] # SOLUTION
grader.check("s2 (optional)")

Sanity Check (ungraded): Suppose that our algorithm backtracks to node (i, j) and determines
that the edge (i,j-1)->(i,j) is in this shortest path. So far, the algorithm computed 2 strings
x_align and y_align based on the path from (i,j) to (n,m). These correspond to an alignment
of the substrings x[i:n] and y[j:n]. Given this new edge, what characters should you add to
x_align and y_align? Input your answer choice as list of ints (ie ans = [1] or ans = [1,2]),
where each int represents one of the following choices:

add a gap to the start of x_align
add a gap to the start of y_align
add x[1-1] to the start of x_align
add y[j-1] to the start of y_align

W=

Hint: a character must be added to both strings since at each step, len(z_align) == len(y_align).

ans = [1,4] # SOLUTION
grader.check("s3 (optional)")

Sanity Check (ungraded): Suppose that our algorithm backtracks to node (i, j) and determines
that the edge (i-1,j-1)->(i,j) is in this shortest path. So far, the algorithm computed 2 strings
x_align and y_align based on the path from (i, j) to (n,m). These correspond to an alignment
of the substrings x[i:n] and y[j:n]. Given this new edge, what characters should you add to

[39]:

[]:

[41]:

[1:

[43]:

[]:

x_align and y_align? Input your answer choice as list of ints (ie ans = [1] or ans = [1,2]),
where each int represents one of the following four choices:

add a gap to the start of x_align
add a gap to the start of y_align
add x[1-1] to the start of x_align
add y[j-1] to the start of y_align

W

Hint: a character must be added to both strings since at each step, len(z_align) == len(y_align).

ans = [3,4] # SOLUTION
grader.check("s4 (optional)")

Since we know how to translate edges into global alignment, we now want to reconstruct the actual
path from (n,m) to (0,0). If an edge (a,b)->(c,d) is part of the shortest path, this means the
subproblem (a,b) was used to compute the solution to (c,d). For the edit distance problem, we
know that the subproblem (i,j) is computed from the either (i-1,j), (i,j-1), or (i-1,j-1).
Therefore, if the node (i, j) is visited in the shortest path, then one of the edges (i-1,j)->(1,j),
(1,j-1)->(1,j), or (i-1,j-1)->(4i,j) is in the shortest path.

We can figure out the correct edge based on the values in the dp matrix. Recall the recurrence
of edit distance: dp[i] [j] = min(dp[i - 11[j] + 1, dp[il[j - 1] + 1, dpli - 11[j - 1] +
diff (i, j)). This means that at least one of the three values dpli - 11[j] + 1, dplil[j - 1]
+ 1, ordpli - 11[j - 1] + diff(i,j) must equal dp[i] [j]. If the value equals dp[i] [j], then
that is a possible previous subproblem; otherwise, it is not. If there are multiple possible previous
problems, you may back track to any one of them.

Sanity Check (ungraded): Suppose you know that dp[i] [j]1 = 5 and following values in the DP
matrix. Which subproblems could be used to compute dp[i] [j17 Input your answer choice as list
of ints (ie ans = [1] or ans = [1,2]) 1. dp[i-1]1[j] = 4 2. dp[i]1[j-1] = 53. dpl[i-1]1[j-1] =
5, diff(i,j) = 0

ans = [1,3] # SOLUTION
grader.check("s5 (optional)")

Sanity Check (ungraded): Suppose you know that dp[i] [j]1 = 9 and following values in the DP
matrix. Which subproblems could be used to compute dp[i] [j17 Input your answer choice as list
of ints (ie ans = [1] orans = [1,2]) 1. dp[i-11[j] = 9 2. dp[i][j-1] = 8 3. dp[i-1]1[j-1] =
9, diff(i,j) =1

ans = [2] # SOLUTION
grader.check("s6 (optional)")

Following this logic, we start at (n,m) and repeatedly find the previous node until we reach (0,0).
Each time we backtrack one step, we update the alignment based on the edge we took.

1.1.2 Q1.1 Edit Distance (Graded)
Now, implement the edit_distance function itself! This is the only part of Q1 that will be graded.
[45]: def edit_distance(x, y):

args:
z:string = the first word.
y:string = The second word.

return:
Tuple[String,String] = the optimum global alignment between z and y. The,
—first string in the
tuple corresponds to = and the second to y. Use hypen's '-' to represent,
—gaps in each string.
BEGIN SOLUTION
n = len(x)
m = len(y)
dp = [1
def diff(i,j):
return 1 if x[i - 1] !'= y[j - 1] else O

base cases

for i in range(n + 1):
dp.append ([-1] * (m + 1))

for i in range(n + 1):

dpli] [0] =i
for j in range(m + 1):
dpl[0][j] = j

compute recurrence
for i in range(l, n + 1):
for j in range(l, m + 1):
by_deletion = dp[i - 11[j] + 1
by_insertion = dp[i][j - 1] + 1
by_substitution = dpl[i - 11[j - 1] + diff(4i,j)
dpl[i] [j] = min(by_deletion, by_insertion, by_substitution)

Backtrace to compute the optimum alignment:
x_align, y_align = "", ""
i,j = n,m
while (i, j) '= (0,0):
deletion = dpl[i-1]1[j] + 1 if i > 0 else float("inf")
insertion = dp[i]l[j-1] + 1 if j > 0 else float("inf")
substitution = (dpl[i-1][j-1] + diff(i,j)) if 1 > 0 and j > 0 elsey
—float("inf")
moves = [

[]:

(deletion, (i-1,3)),
(insertion, (i,j-1)),
(substitution, (i-1,j-1)),

]
prev_i, prev_j = min(moves) [1]
x_align += x[i-1] if prev_i == i-1 else '-'

y_align += y[j-1] if prev_j == j-1 else '-'
i,j = prev_i, prev_j

return x_align[::-1], y_align[::-1]
END SOLUTION

Note: your solution should not take inordinate amounts of time to run. If it takes
more than 60 seconds to run, it is too slow. The staff solution takes 20 seconds on
average.

grader.check("edit_distance")

1.1.3 Debugging

A simplified verion of the otter tests are pasted here for your convenience. Feel free to add whatever
print statements or assertions you’d like when debugging.

You can roughly split this task into two parts: finding the optimal edit distance and then recon-
structing the best possible alignment. When debugging, might want to first ensure that your edit
distances are correct before checking your alignment code. Additionally, when debugging the align-
ment, you might want to consider working through some small examples by hand - the examples
from the textbook are a great place to start, as well as any examples that might invoke particular
edge cases.

[46]: rng = random.default_rng(rng_seed)

start = time.time()
def check_word(original, aligned):

""" checks that the string “aligned’ %s obtained by only adding gaps to the,
—string “original ™ '''

assert len(aligned) >= len(original), "your function returned a string which,
—1is shorter than the input string!"

i,j = 0,0
while i < len(original) and j < len(aligned):

while aligned[j] == '-' and j < len(aligned):

jo+=1
assert original[i] == aligned[j], "your function returned a string which
—cannot be produced by only adding gaps!"
i+=1
jo+=1

while j < len(aligned):

assert aligned[j] == '-', "your function returned a string which cannot,
—be produced by only adding gaps!"
j =t

NUM_TRIALS = 200

LETTERS = list(string.ascii_lowercase)
MIN_WORD_SIZE 250

MAX_WORD_SIZE 500

I

for i in tqdm.tqdm(range (NUM_TRIALS)):
wordl_size, word2_size = rng.integers(MIN_WORD_SIZE, MAX_WORD_SIZE, size=2)
wordl = ''.join(rng.choice(LETTERS, size=wordl_size))
word2 = ''.join(rng.choice(LETTERS, size=word2_size))
alignl,align2 = edit_distance(wordl, word2)

assert len(alignl) == len(align2), f"""a global alignment requires the twoy
—strings to be the same
length, your functions returns two strings of length {len(alignil)} and,
—{len(align2) """

check_word(wordl, alignl)
check_word(word2, align2)

dist = 0
for a,b in zip(alignl,align2):
if a != b:
dist += 1
staff_distance = pylev.levenshtein(wordl, word2)
assert staff_distance == dist, f£"""the inputs have an edit distance of|,

—{staff_distance}, but your
strings have a distance of {dist}."""
finish = time.time()
assert finish - start < 60, "your solution timed out"

100%|1 200/200 [00:08<00:00, 23.26it/s]

1.2 Q2) Traveling Salesperson DP

Now, we’ll implement the dynamic programming algorithm for the traveling salesperson prob-
lem (TSP). A brute force solution will be hopelessly slow even for moderate-sized test
cases, but we can use dynamic programming to get a solution in slightly more reasonable
(but still exponential) time. For a refresher on the TSP algorithm, see Lecture 12 or
https://people.eecs.berkeley.edu/~vazirani/algorithms/chap6.pdf#page=20.

As with previous problems, we want you to return the actual tour, not the cost of the tour. We can
once again apply the same procedure of backtracking through our subproblem array to reconstruct
this tour.

[3]:

1.2.1 Representing Subproblems

If we use a set as one of our subproblem parameters, we can’t directly use a 2D array to store our
subproblems. There are two common ways to work around this issue:

1. Subproblem Dictionary You could store subproblems in a dictionary, where the keys are
tuples of the form (S, i), where i represents the last city visited before returning home and 8 is
the set of cities visited so far.

To make this work, you need to ensure that the keys are hashable. One way is using Python’s
built-in frozenset class for S. frozenset is a built-in type so you can use it without any additional
imports, and works just like a normal set, except that it is immutable (and hashable). You can read
more about frozenset here: https://docs.python.org/3/library /stdtypes.html#frozenset.

2. Bitmasking Instead of a hash set, we actually can still use a 2D array to store subproblems,
where S is represented as an n-bit unsigned integer, and the i-th bit of S would be set to 1 if and
only if the i-th city is part of the set of visited cities. Since S is an integer, we can use it to index
into our 2D array.

The bitmasking approach tends to be about twice as fast and much more memory-efficient than the
frozenset approach, but both approaches will pass the autograder if implemented correctly.

1.2.2 Implementation tip:

As with before, storing the entire tour at each step is too memory-intensive and will cause the
autograder to fail. Instead, consider maintaining a separate dictionary or array which stores a
smaller amount of information but can still help you reconstruct the tour (can the “shortest path
in the DP DAG” idea help here?).

Be careful with indexing! The algorithm from the book assumes your cities are labeled 1,...,n
- if you are indexing into a Python list, will you need to adjust your indices?

Be careful with subproblem ordering! We need to ensure that whenever we go to solve a subproblem,
all of the subproblems it depends on have already been solved.

The graph is not necessarily complete! If no tour is possible, return an empty list.

1.2.3 Graph helpers

Like the last homeworks, we use a weighted adjacency list to represent the graph. We’ll use a
similar format as before, except graph[u] is now a hashmap instead of a list of pairs. For this
assignment, graphs are undirected, so if there is an (undirected) edge between nodes u and v
with weight w, then graph[u] contains key v with value w and graph[v] contains key u with value
.

We provide the following code to help you test your implementation.
def generate_adj_list(n, edge_list: list[tuplel[int]]) -> list[dict[int, int]]:
args:
n:int = number of nodes in the graph. The nodes are labelled withy,
—1integers 0 through n-1

edge_list:list[tuple[int,int,int]] = edge list where each tuple (u,v,w),
—represents the

undirected and weighted edge (u,v,w) in the graph
return:

4 list[dict[int, int]] representing the adjacency list
adj_list = [{} for _ in range(n)]
for u, v, w in sorted(edge_list):

adj_list[ul[v] = w

undirected edges

adj_list[v][u]l = w
return adj_list

def draw_graph(adj_list: list[dict[int, int]]):
"""ytilety method for visualizing graphs

args:
adj_list: list[dict[int, int]] = adjacency list representation of the,
—graph generated by generate_adj_list
G = Graph()
for u in range(len(adj_list)):
for v, w in adj_list[u]:
G.add_edge(u, v, weight=w)
draw(G, with_labels=True)

[31]: def tsp_dp(adj_list):
"""Compute the exact solution to the TSP using dynamic programming and,
—returns the optimal path.

Args:
dist_arr: Weighted undirected graph represented as an adjacency list.

Returns:
List[int]: 4 list of city indices representing the optimal path.
BEGIN SOLUTION
n = len(adj_list)
if n == 0: return []

MAX_DIST = n * max(w for neighbors in adj_list for w in neighbors.values())
—+ 1

dp = [[MAX_DIST] #* n for _
prev = [[MAX_DIST] * n for

in range(1l << n)]
in range(1l << n)]

def generate_subsets(n, k):

def backtrack(start, curr, 1):

if 1 == k:
yield curr
return

for i in range(start, n):
curr |= (1 << i)

yield from backtrack(i + 1, curr, 1 + 1)
curr &= “(1 << i)

yield from backtrack(0, 0, 0)

dp[1][0] =0
for size in range(2, n+1):
for ss in generate_subsets(n-1, size-1):
S=ss<<1] 1
for j in range(l, n):
if not (S & (1 << j)): # ensure j ts in the set
continue
for k, w in adj_list[j].items():
if k == j or not (S & (1 << k)):
continue
if dp[S1[j] >= dpl[S ~ (1 << I[k] + w:
dp[S]1[jl = dp[S =~ (1 << NIkl + w
prev[SI[j] = k

Backtracking to reconstruct tour
tour = []
S=(<<mn -1
opt_dist, city = min((dp[S]1[j] + w, j) for j, w in adj_list[0].items())
if opt_dist >= MAX_DIST:
return []
print (prev)
while S:
print(bin(S), city, prev[S][city])
tour.append(city)
S ~= (1 << city)
city = prev[S | 1 << city] [city]

return tour
END SOLUTION

BEGIN SOLUTION NO PROMPT
Alternate solution using recurstion and memoization and frozensets
def tsp_dp_alt(adj_list):

n = len(adj_list)

dp = {}

prev = {}

10

[]:

def tsp_helper(S, i):
if (8, i) in dp:
return dp[(S, i)]

if S == frozenset():
if i in adj_list[0]:
return adj_list[0] [i]
return float('inf')

min_cost = float('inf')
prev_city = n + 1
for city in S:
if i1 not in adj_list([cityl:
continue
cost = adj_list[i] [city] + tsp_helper(S.difference({city}), city)
min_cost, prev_city = min((min_cost, prev_city) , (cost, city))

dp[(S, i)] = min_cost
prev[(S, i)] = prev_city
return min_cost

best_distance = tsp_helper(frozenset(range(l, n)), 0)
if best_distance == float('inf'):
return []

Backtracking to reconstruct tour
S = frozenset(range(1l, n))

city = 0 # start at the origin
tour = [0]

print (prev)

while S:
city = prev[(S, city)]
tour.append(city)
S = S.difference({city})

return tour
END SOLUTION

grader.check("TSP")

1.2.4 Debugging

A simplified verion of the otter tests are pasted here for your convenience. Feel free to add whatever
print statements or assertions you’d like when debugging.

11

[22]: # tests on wery small cases
for adj_list, expected_distance in tqdm.tqdm(test_datal['TSP-1']):
result = tsp_dp(adj_list)

if expected_distance < O:
no tour 1s possible
assert result == [], "You returned a tour when no tour is possible"

else:
assert set(result) == set(range(len(adj_list))), f"Your output does not
—visit all cities"
student_length = validate_tour(result, adj_list)
assert student_length >= 0, f"Your output is not a valid tour"
assert student_length == expected_distance, f"Your output is not a
—minimum distance tour"

100%11 20/20 [00:01<00:00, 13.76it/s]

1.3 Submission

Make sure you have run all cells in your notebook in order before running the cell below, so that
all images/graphs appear in the output. The cell below will generate a zip file for you to submit.

[1: | grader.export(pdf=False, force_save=True, run_tests=True)

12

	Study Group
	Egg Drop
	Counting Targets
	String Shuffling
	My Dog Ate My Homework
	[Coding] More Advanced Dynamic Programming

