
CS 170, Fall 2020 HW 8 A. Tal & U. Vazirani

CS 170 HW 8

Due 2020-10-26, at 10:00 pm

1 Study Group

List the names and SIDs of the members in your study group. If you have no collaborators,
you must explicitly write none.

In addition, we would like to share correct student solutions that are well-written with
the class after each homework. Are you okay with your correct solutions being used for this
purpose? Answer “Yes”, “Yes but anonymously”, or “No”

2 Practice With Residual Graphs

(a) Consider the following network and flow on this network. An edge is labelled with its
flow value (in blue) and capacity (in black). e.g. for the edge (s, a), we are currently
pushing 2 units of flow on it, and it has capacity 7.

Draw the residual graph for this flow.

(b) We are given a network G = (V,E) whose edges have integer capacities ce, and a max-
imum flow f from node s to node t. Explicitly, f is given to us in the representation of
integer flows along every edge e, (fe).
However, we find out that one of the capacity values of G was wrong: for edge (u, v), we
used cuv whereas it really should have been cuv− 1. This is unfortunate because the flow
f uses that particular edge at full capacity: fuv = cuv. We could run Ford Fulkerson
from scratch, but there’s a faster way.

1

CS 170, Fall 2020 HW 8 A. Tal & U. Vazirani

Describe an algorithm to fix the max-flow for this network in O(|V |+ |E|) time. Give a
three-part solution.

Solution:

(a)

(b) Main Idea: Since we know the flows along every edge, we can construct the residual
graph in O(|V |+ |E|) time as there are 2|E| edges in the residual graph.

In this residual graph with the original capacity for (u, v), use DFS to find a path from t
to v and from u to s. Join these paths by adding the edge (v, u) in between them to get
a path p. Update f by pushing 1 unit of flow from t to s on p (i.e. for each (i, j) ∈ p,
reduce fji by 1, and increase fij by 1 for all edges except (u, v)). Finally, use DFS to see
if the residual graph of the resulting graph, has an s− t path. If so, push 1 unit of flow
on this path.

Proof of Correctness: Consider the residual graph of G. If (u, v) is at capacity, then
there is a flow of at least 1 unit going from v to t, and since fe are integral there is a
path from v to t with at least one unit of flow moving through it. So the residual graph
will have a path from t to v. Similarly, there will be a path from u to s in the residual
graph, so the algorithm can always find p correctly.

Note that the size of the maximum flow in the new network will be either the same
or 1 less than the previous maximum flow (because changing one edge can change the
capacity of the min-cut by at most 1). In the former case, after pushing flow from t to
s on p, it is possible to push more flow from s to t, so there must be an s − t path in
the new residual graph, so the Ford Fulkerson algorithm will find and push 1 unit of flow
because all capacities and flow values are integral. Thus the algorithm finds the new max
flow correctly. In the latter case, we will already have the max flow after pushing flow
backwards on p, so our algorithm is still correct.

2

CS 170, Fall 2020 HW 8 A. Tal & U. Vazirani

Runtime: The runtime is O(|V | + |E|) because the algorithm just calls DFS on the
residual thrice, and it takes O(|V |+ |E|) to construct the residual.

3 Global Min-Cut via Ford-Fulkerson

Given a connected undirected unweighted graph G, recall that a cut is any partition of V into
two non-empty sets A,B, and the size of the cut is the number of edges with one endpoint
in A and one in B. The global min-cut is the cut with the smallest size.

Give an algorithm based on the Ford-Fulkerson algorithm that given G and c, either
outputs the global min-cut if it has size at most c, or correctly outputs that the global min-
cut has size greater than c. The algorithm should run in time O(|V ||E|c). Give a three-part
solution.

(Recall that the Ford-Fulkerson algorithm repeatedly finds an s-t path in the residual
graph and pushes as much flow as possible on this path)

Solution: Main idea: Fix some vertex s. We will run Ford-Fulkerson to find the max-
flow from s to every other vertex, but we will only use c + 1 iterations of Ford-Fulkerson in
each run.

If any run of Ford-Fulkerson is unable to increase its flow value at any point in the first
c + 1 iterations, we know there is no augmenting path from s to t in the residual graph, i.e.
the vertices reachable from s form one side of the minimum s − t cut. In this case, we will
store this cut and its size.

At the end, if any of the cuts we stored has size at most c, we output the smallest cut we
stored. Otherwise we output that the global min-cut has size greater than c.

Proof of correctness: By the max-flow min-cut theorem, if the global min-cut has size
at most c, the max-flow between two vertices on opposite sides of this cuts is at most c. In
particular, s and some vertex t are on opposite sides of this cut. When we run Ford-Fulkerson
between s and t, each iteration increases the size of the flow by at least 1, so we will find a
max s− t flow in at most c iterations, and thus find a min s− t cut in this many iterations.
So we always find the global min-cut if it has size at most c.

Runtime analysis: Each iteration of Ford-Fulkerson takes O(|E|) time, and we run
O(|V |) copies for c + 1 iterations, so the runtime is O(|V |||E|c).

4 Meal Replacement

We are trying to eat cheaply but still meet our minimum dietary needs. We want to consume
at least 500 calories of protein per day, 100 calories of carbs per day, and 400 calories of fat
per day. We have three options for food we’re considering buying: meat, bread, and protein
shakes.

� We can consume meat, which costs 5 dollars per pound, and gives 500 calories of protein
and 500 calories of fat per pound.

� We can consume bread, which costs 2 dollars per pound, and gives 50 calories of protein,
300 calories of carbs, and 25 calories of fat per pound.

3

CS 170, Fall 2020 HW 8 A. Tal & U. Vazirani

� We can consume protein shakes, which cost 4 dollars per pound, and gives 300 calories
of protein, 100 calories of carbs, and 200 calories of fat per pound.

Our goal is to find a combination of these options that meets our daily dietary needs
while being as cheap as possible.

(a) Formulate this problem as a linear program.

(b) Take the dual of your LP from part (a).

(c) Suppose now there is a pharmacist trying to assign a price to three pills, with the hopes
of getting us to buy these pills instead of food. Each pill provides exactly one of protein,
carbs, and fiber.

Interpret the dual LP variables, objective, and constraints as an optimization problem
from the pharmacist’s perspective.

Solution:

(a) Let m be the pounds of meat we consume, b be the pounds of bread, and s be the
pounds of shakes. The objective is to minimize cost, and we have a constraint for each
of protein/carbs/fat.

min 5m + 2b + 4s

500m + 50b + 300s ≥ 500

300b + 100s ≥ 100

500m + 25b + 200s ≥ 400

m, b, s ≥ 0

(b) Let p, c, f be variables corresponding to the protein, carb, and fat constraints. The dual
is:

max 500p + 100c + 400f

500p + 500f ≤ 5

50p + 300c + 25f ≤ 2

300p + 100c + 200f ≤ 4

p, c, f ≥ 0

(c) The variables can be interpreted as the price per calorie for the protein, carb, and fat
pills.

The objective says that the pharmacist wants to maximize the total revenue he gets from
selling enough of these pills to us to meet our dietary needs.

The constraints say that no combination of pills should cost more than a pound of food
providing the same dietary needs (otherwise, we would just buy that food instead of these
pills).

4

CS 170, Fall 2020 HW 8 A. Tal & U. Vazirani

5 Vertex Cover Dual

This is a solo question.
In this problem, we consider the unweighted vertex cover problem. In this problem, we

are given a graph and want to find the smallest set of vertices S such that every edge has at
least one endpoint in S.

Recall the LP for this problem:

min
∑
v

xvs. t. ∀(u, v) ∈ E : xu + xv ≥ 1, ∀v ∈ V : xv ≥ 0

In an integral solution, xv = 1 if we include v in our vertex cover, and xv = 0 if we don’t
include v.

(i) Write the dual of the vertex cover LP. Your dual LP should have a variable ye for every
edge.

(ii) Consider the integer version of the dual you wrote, i.e. we enforce ye ∈ {0, 1}. Similarly
to vertex cover, we can interpret ye = 1 as indicating that we include e in our solution
and ye = 0 if we don’t include e.

Using this interpretation, what does the objective say? What do the constraints say?
What problem is this? (You don’t have to be formal.)

(iii) True or False: If we have an integer primal solution with cost C and a fractional dual
solution with cost at least C/2, the size of the vertex cover corresponding to the primal
solution is at most twice the size of the smallest vertex cover. Briefly justify your answer.

Solution:

(i) Let Ev all the edges incident on vertex v. The dual LP is given by

maximize
∑
e∈E

ye

subject to
∑
e∈Ev

ye ≤ 1 ∀v ∈ V

ye ≥ 0 ∀e ∈ E

(ii) The objective is to maximize the number of edges in our solution.

The constraint says no two edges in our solution share an endpoint.

This is exactly the maximum matching problem. (You don’t need to name the maximum
matching problem for full credit).

(iii) True. The size of the vertex cover corresponding to the integer primal solution is C.
Let POPT be the optimal value of the primal LP, DOPT be the optimal value of the
dual LP, and VOPT be the size of the smallest vertex cover. C/2 ≤ DOPT since the dual
optimal solution’s objective is at least that of any feasible dual solution, DOPT = POPT

by duality, and POPT ≤ VOPT because the smallest vertex cover gives a feasible solution
to the vertex cover LP with cost VOPT . Putting it all together, we have C ≤ 2VOPT .

5

CS 170, Fall 2020 HW 8 A. Tal & U. Vazirani

6 Domination

This is a solo question.
In this problem, we explore a concept called dominated strategies. Consider a zero-sum

game with the following payoff matrix for the row player:
Column:

A B C
D 1 2 -3

Row: E 3 2 -2
F -1 -2 2

(a) If the row player plays optimally, can you find the probability that they pick D without
directly solving for the optimal strategy? Justify your answer.

(Hint: How do the payoffs for the row player picking D compare to their payoffs for
picking E?)

(b) Given the answer to part a, if the both players play optimally, what is the probability
that the column player picks A?

(c) Given the answers to part a and b, what are both players’ optimal strategies?

Note: All parts of this problem can be solved without using an LP solver or solving a
system of linear equations.

Solution:

(a) 0. Regardless of what option the column player chooses, the row player always gets a
higher payoff picking E than D, so any strategy that involves a non-zero probability of
picking D can be improved by instead picking E.

(b) 0. We know that the row player is never going to pick D, i.e. will always pick either E or
F . But in this case, picking B is always better for the column player than picking A (A
is only better if the row player picks D). That is, conditioned on the row player playing
optimally, B dominates A.

(c) Based on the previous two parts, we only have to consider the probabilities the row player
picks E or F and the column player picks B or C. Looking at the 2-by-2 submatrix
corresponding to these options, it follows that the optimal strategy for the row player is
to pick E and F with probability 1/2, and similarly the column player should pick B, C
with probability 1/2.

7 Zero-Sum Battle

This is a solo question.
Two Pokemon trainers are about to engage in battle! Each trainer has 3 Pokemon, each

of a single, unique type. They each must choose which Pokemon to send out first. Of course

6

CS 170, Fall 2020 HW 8 A. Tal & U. Vazirani

each trainer’s advantage in battle depends not only on their own Pokemon, but on which
Pokemon their opponent sends out.

The table below indicates the competitive advantage (payoff) Trainer A would gain (and
Trainer B would lose). For example, if Trainer B chooses the fire Pokemon and Trainer A
chooses the rock Pokemon, Trainer A would have payoff 2.

Trainer B:
ice water fire

dragon -10 3 3
Trainer A: steel 4 -1 -3

rock 6 -9 2
Feel free to use an online LP solver to solve your LPs in this problem.
Here is an example of an online solver that you can use: https://online-optimizer.

appspot.com/.

1. Write an LP to find the optimal strategy for Trainer A. What is the optimal strategy
and expected payoff?

2. Now do the same for Trainer B. What is the optimal strategy and expected payoff?
How does the expected payoff compare to the answer you get in part (a)?

Solution:

1. d = probability that A picks the dragon type
s = probability that A picks the steel type
r = probability that A picks the rock type

max z

−10d + 4s + 6r ≥ z (B chooses ice)

3d− s− 9r ≥ z (B chooses water)

3d− 3s + 2r ≥ z (B chooses fire)

d + s + r = 1

d, s, r ≥ 0

The optimal strategy is d = 0.3346, s = 0.5630, r = 0.1024 for an optimal payoff of
−0.48.

If you are using the website suggested in this problem, here is what you should put in
the model tab:

2. i = probability that B picks the ice type
w = probability that B picks the water type
f = probability that B picks the fire type

7

https://online-optimizer.appspot.com/
https://online-optimizer.appspot.com/

CS 170, Fall 2020 HW 8 A. Tal & U. Vazirani

min z

−10i + 3w + 3f ≤ z (A chooses dragon)

4i− w − 3f ≤ z (A chooses steel)

6i− 9w + 2f ≤ z (A chooses rock)

i + w + f = 1

i, w, f ≥ 0

B’s optimal strategy is i = 0.2677, w = 0.3228, f = 0.4094. The value for this is −0.48,
which is the payoff for A. The payoff for B is the negative of A’s payoff, i.e. 0.48, since
the game is zero-sum.

If you are using the website suggested in this problem, here is what you should put in
the model tab:

(Note for grading: Equivalent LPs are of course fine. It is fine for part (b) to maximize
B’s payoff instead of minimizing A’s. For the strategies, fractions or decimals close to
the solutions are fine, as long as the LP is correct.)

8

CS 170, Fall 2020 HW 8 A. Tal & U. Vazirani

9

	Study Group
	Practice With Residual Graphs
	Global Min-Cut via Ford-Fulkerson
	Meal Replacement
	Vertex Cover Dual
	Domination
	Zero-Sum Battle

