1 Motel Choosing

You are traveling along a long road, and you start at location $r_0 = 0$. Along this road, there are n motels at location $\{r_i\}_{i=1}^n$ with $0 < r_1 < r_2 < \cdots < r_n$. The only places you may stop are these motels, but you can choose which to stop at. You must stop at the final motel (at distance r_n), which is your destination.

Ideally, you want to travel exactly T miles a day and stop at a motel at the end of the day, but this may not be possible (depending on the spacing of the motels). Instead, you receive a penalty of $(T - x)^8$ each day, if you travel x miles during the day. The goal is to plan your stops to minimize the total penalty (over all travel days).

Describe and analyze an algorithm that outputs the minimum penalty, given the locations $\{r_i\}$ of the motels and the value of T.

2 Power of LP

In this problem, we are going to see many problem we have studied so far in the class can be expressed as a linear program (LP). For each problem, we ask you to first provide an integer linear programming (ILP) formulation. An integer linear program is just like a linear program (with linear constraints and objective), but allows you to add the constraints that the variables are integral. For example, you can have $x_e \in \{0, 1\}$— which is not allowed in LP.

The requirement is that the optimal solution to the ILP should correspond to an optimal solution to the original problem (for example, MST). For each problem, try to find an LP with the smallest number of constraints and variables. Some of them may require exponentially many constraints, but it’s OK.
(a) Given a weighted, undirected graph, write an ILP formulation for the problem of minimum spanning tree, and describe how to relax it to an LP. Argue that any feasible solution to the ILP is a spanning tree, and that any spanning tree is a feasible solution to the ILP.

(b) Given a weighted, directed graph $G = (V, E)$ and $s, t \in V$, write an ILP formulation for the problem of computing s-t shortest path distance, and describe how to relax it to an LP. Briefly explain why solving the ILP leads to the optimal solution.

(c) Given a weighted, undirected graph and a set of vertices $B = \{v_i\}_{i=1}^k$, the spider connection problem asks one to select a minimum weight subgraph that gets all vertices in B connected.

(i) Show how the spider connection problem captures MST and s-t shortest path as its special cases.

(ii) Show that the optimal solution to the spider connection problem is always acyclic, and the edges selected form a single connected component.

(iii) Write an ILP formulation for the spider connection problem, and briefly describe how to relax it to an LP.

(d) Consider the weighted set cover problem. We are given a set of elements U and a collection $\mathcal{T} = \{S_i\}$ of subsets of U, along with weights w_S on the subsets. The goal is to select a minimum weight collection of sets from \mathcal{T} such that every element in U is in a set (i.e., covered).

Write an ILP formulation for the weighted set cover problem, and briefly describe how to relax it to an LP.

3 Integrality gap

In the last question, we formulated many problems as ILP and then relax it to LP. The requirement is that the ILP must directly lead to an optimal, integral solution. In this question, we investigate a curious phenomenon that the optimal solution of the LP relaxation may be fractional, and the optimal objective can be better than the ILP solution. This is known as the integrality gap of LP. In particular, define the integrality gap of an LP relaxation is

$$IG = \frac{\text{OPT}(ILP)}{\text{OPT}(LP)};$$

where $\text{OPT}(LP)$ and $\text{OPT}(ILP)$ denote the optimal objective value of the LP and its corresponding ILP.

(a) Given an unweighted, undirected graph $G = (V, E)$, the vertex cover problem asks one to select a minimum set $S \subseteq V$ of vertices such that for each edge, at least one of its endpoints is in S.

2
(i) Show that the vertex cover problem is a special case of the (unweighted) set cover problem. You need to specify what the universe U and collection of sets S are in the set cover problem.

(ii) Write an ILP formulation for vertex cover, and then describe its LP relaxation.

(iii) Describe a graph where the integrality gap of the above ILP and LP is strictly greater than 1. Compute $\text{OPT}(\text{ILP})$ and $\text{OPT}(\text{LP})$ on this graph.

 Hint: What can you do with just 3 vertices?

(iv) For each n, describe an n-vertex graph such that the integrality gap approaches 2 as $n \to \infty$.

 Hint: Can you generalize your construction for (c) somehow?

(b) Given an unweighted, undirected graph $G = (V, E)$, the maximum independent set problem asks for a maximum set of vertices such that no pair is connected by an edge.

(i) Write an ILP formulation for maximum independent set, and then describe its LP relaxation.

(ii) For each n, describe an n-vertex graph such that the integrality gap between the ILP and LP is $\Theta(1/n)$. (This means that the LP give a much larger objective value than ILP.) Compute $\text{OPT}(\text{ILP})$ and $\text{OPT}(\text{LP})$ on this graph.

4 Duality

In this problem, we explore linear programming duality.

(i) Consider the LP relaxation for the unweighted vertex cover problem. Write its dual LP.

(ii) Interpret the variables and constraints of the dual LP. What do they correspond to on the graph? (You don’t have to be formal. Just explain the idea.)

(iii) Suppose we have an integral feasible solution to the primal LP, with objective value $P > 0$, and an arbitrary feasible solution to the dual LP, with objective value $D > 0$. Further, assume $P/D \leq c$. Let $\text{OPT} > 0$ denote the objective value of the optimal integral solution to the primal. Show that $P/\text{OPT} \leq c$, that is, the primal solution is approximately optimal by a factor of c. (This statement holds in general for any primal/dual LP pair, not only in the context of vertex cover.)

 Hint: Use weak duality

(iv) *Fun and pretty hard challenge:* Use the idea above to approximate the (integral) vertex cover problem by a factor of 2.

(v) Consider the LP relaxation for weighted set cover problem that you wrote earlier. Write its dual LP.