
CS 170, Spring 2025 Homework 13 N. Haghtalab and J. Wright

CS 170 Homework 13

Due Sunday 5/4/2025, at 10:00 pm (grace period until 11:59pm)

1 Study Group (1 point)

List the names and SIDs of the members in your study group. If you have no collaborators,
you must explicitly write “none”.

2 Multiway Cut (10 points)

In the multiway cut problem, we are given a graph G = (V,E) with k special vertices
s1, s2, . . . , sk. Our goal is to find the smallest set of edges F which, when removed from
the graph, disconnect the graph into at least k components, where each si is in a different
component. When k = 2, this is exactly the min s-t cut problem, but if k ≥ 3 the problem
becomes NP-hard.

Consider the following algorithm: Let Fi be the set of edges in the minimum cut with si on
one side and all other special vertices on the other side. Output F , the union of all Fi. Note
that this is a multiway cut because removing Fi from G isolates si in its own component.

(a) (3 points) Explain how each Fi can be found in polynomial time.

(b) (4 points) Let F ∗ be the smallest multiway cut. Consider the connected components
that removing F ∗ disconnects G into, and let Ci be the set of vertices in the component
with si. Let F

∗
i be the set of edges in F ∗ with exactly one endpoint in Ci. How many

different F ∗
i does each edge in F ∗ appear in? Which is larger: Fi or F

∗
i ?

(c) (3 points) Using your answer to the previous part, show that |F | ≤ 2|F ∗|.

(d) Extra Credit (2 points): how could you modify this algorithm to output F such
that |F | ≤ (2− 2

k)|F
∗|?

This content is protected and may not be shared, uploaded, or distributed. 1 of 6

CS 170, Spring 2025 Homework 13 N. Haghtalab and J. Wright

3 Relaxing Integer Linear Programs (17 points)

As discussed in lecture, Integer Linear Programming (ILP) is NP-complete. In this problem,
we discuss attempts to approximate ILPs with Linear Programs and the potential shortcom-
ings of doing so.

Throughout this problem, you may use the fact that the ellipsoid algorithm finds an optimal
vertex (and corresponding optimal value) of a linear program in polynomial time.

(a) (3 points) Suppose that x⃗0 is an optimal point for the following arbitrary LP:

maximize c⊤x

subject to: Ax ≤ b

x ≥ 0

Show through examples (i.e. by providing specific canonical-form LPs and optimal
points) why we cannot simply (i) round all of the element in x⃗0, or (ii) take the floor
of every element of x⃗0 to get good integer approximations.

(b) (2 points) The Matching problem is defined as follows: given a graph G, determine
the size of the largest subset of disjoint edges of the graph (i.e. edges without repeating
incident vertices).

Find a function f such that:

maximize f(x⃗)

subject to:
∑

e∈E,v∈e
xe ≤ 1 ∀v ∈ V

0 ≤ xe ≤ 1 ∀e ∈ E

is an LP relaxation of the Matching problem. Note that the ILP version (which
directly solves Matching) simply replaces the last constraint with xe ∈ {0, 1}.

(c) (6 points) It turns out that the polytope of the linear program from part (b) has vertices
whose coordinates are all in {0, 12 , 1}. Using this information, describe an algorithm that
approximates Matching and give an approximation ratio with proof.

Hint: round up, then fix constraint violations.

(d) (4 points) There is a class of linear program constraints whose polytopes have only
integral coordinates. Let P>2,odd(V) be the set of subsets of the vertices with size that
is odd and greater than 2. It turns out that, if we simply add to the LP from part (b)
the following constraints:∑

e∈E(S)

xe ≤
|S| − 1

2
∀S ∈ P>2,odd(V),

then all vertices of the new feasible region polytope are integral. First, interpret these
constraints in words and explain why it still describes the Matching problem. Then,
explain what this result implies about approximating ILPs with (special) LPs.

This content is protected and may not be shared, uploaded, or distributed. 2 of 6

CS 170, Spring 2025 Homework 13 N. Haghtalab and J. Wright

(e) (2 points) Why doesn’t the observation in part (d) imply that Matching ∈ P?

Hint: what is the size of set P>2,odd(V)?

This content is protected and may not be shared, uploaded, or distributed. 3 of 6

CS 170, Spring 2025 Homework 13 N. Haghtalab and J. Wright

4 Chameleon Vectors (22 points)

Let L be a vector of integers in [−M,M]n given to us as input, where M < 2n/(4n). For
any other vector x, we will use ⟨L, x⟩ to denote

∑n
i=1 Lixi. In this problem, we look to

define a randomized algorithm that finds two distinct vectors, x1 and x2, in {±1}n such that
⟨L, x1⟩ = ⟨L, x2⟩, i.e. they “look indistinguishable” to L.

(a) (2 points) Prove that there exists distinct x1, x2 ∈ {±1}n such that ⟨L, x1⟩ = ⟨L, x2⟩.
Hint: try to prove this using the pigeonhole principle.

(b) (2 points) Let x be sampled uniformly at random from {±1}n. Use Chebyshev’s in-
equality to prove that:

Pr[|⟨L,x⟩| > 10M
√
n] ≤ 1

100
.

Hint: For this part, as well as future parts, Discussion 13 Q3 may be useful for reference.

(c) (5 points) Let Y1, . . . ,Y⌈2k ln r⌉ each be 2k ln r independent and identical random vari-

ables that are equal to 1 with probability p and 0 otherwise. Prove that if p ≥ 1
k ,

then:

Pr[Y1 + · · ·+Y⌈2k ln r⌉ < 2] ≤ 2

r
.

Hint: you may use the fact that
(
1− 1

n

)n ≤ 1
e without proof. If you’re stuck, try

exploring using this property for various n.

Now, define ℓ = 20M
√
n+1

0.99 . Consider the following algorithm: sample ⌈2ℓ lnn⌉ independent
vectors, x1, · · · ,x⌈2ℓ lnn⌉, and store (⟨L,xi⟩,xi) for every i. Then, sort these by their ⟨L,xi⟩
value. Lastly, iterate through the list and find the first adjacent pair of pairs, (⟨L,xj⟩,xj)
and (⟨L,xj+1⟩,xj+1) such that ⟨L,xj⟩ = ⟨L,xj+1⟩ but xj ̸= xj+1. Output xj and xj+1. Note
that the algorithm fails if no such adjacent pair of pairs exists in the sorted list.

(d) (3 points) Prove that the runtime of this algorithm is O(Mn3/2 log n). You may assume
that sampling k bits takes O(k) time.

We now aim to analyze the probability that this algorithm succeeds. In particular, over the
remainder of the problem, we aim to show that the probability of failure is O(1/

√
n). Define

F to be the most frequent value of ⟨L,xi⟩ in the range [−10M
√
n, 10M

√
n] over all xi.

(e) (4 points) Show that Pr[∃ i ̸= j s.t. ⟨L,xi⟩ = ⟨L,xj⟩ = F] ≥ 1− 2
n .

Hint: Why was ℓ chosen as such? Parts (b) and (c) will be helpful here.

(f) (3 points) Show that there exists some constant c ∈ R such that, no matter what M
and n are, we have:

Pr[xi = xj | ⟨L,xi⟩ = ⟨L,xj⟩ = F] ≤ c√
n
.

Hint: At least how many v ∈ {±1}n satisfy ⟨L, v⟩ = F?

(g) (3 points) Using parts (e) and (f), conclude that this algorithm has a failure probability
in O(1/

√
n).

This content is protected and may not be shared, uploaded, or distributed. 4 of 6

CS 170, Spring 2025 Homework 13 N. Haghtalab and J. Wright

Hint: argue why it must be the case that

Pr[algorithm succeeds] ≥ Pr[∃i ̸= j s.t. xi ̸= xj and ⟨L,xi⟩ = ⟨L,xj⟩ = F].

This content is protected and may not be shared, uploaded, or distributed. 5 of 6

CS 170, Spring 2025 Homework 13 N. Haghtalab and J. Wright

5 [Coding] TSP Usually-Fast Algorithm (8 points)

For this week’s homework, you’ll implement code for the Traveling Salesman Problem that
runs efficiently in most cases (although not in the worst case). There are two ways that you
can access the notebook and complete the problems:

1. On Datahub: click here and navigate to the hw13 folder.

2. On Local Machine: git clone (or if you already cloned it, git pull) from the
coding homework repo,

https://github.com/Berkeley-CS170/cs170-sp25-coding

and navigate to the hw13 folder. Refer to the README.md for local setup instructions.

Notes:

• Submission Instructions: Please download your completed submission .zip file and
submit it to the Gradescope assignment titled “Homework 13 Coding Portion.”

• Getting Help: Conceptual questions are always welcome on Edstem and office hours;
note that support for debugging help during OH will be limited. If you need debugging
help first try asking on the public Edstem threads. To ensure others can help you, make
sure to:

1. Describe the steps you’ve taken to debug the issue prior to posting on Ed.

2. Describe the specific error you’re running into.

3. Include a few small but nontrivial test cases, alongside both the output you ex-
pected to receive and your function’s actual output.

If staff tells you to make a private Ed post, make sure to include all of the above items
plus your full function implementation. If you don’t provide them, we will ask you to
provide them.

• Academic Honesty Guideline: We realize that code for some of the algorithms we ask
you to implement may be readily available online, but we strongly encourage you to not
directly copy code from these sources. Instead, try to refer to the resources mentioned
in the notebook and come up with code yourself. That being said, we do acknowledge
that there may not be many different ways to code up particular algorithms and that
your solution may be similar to other solutions available online.

This content is protected and may not be shared, uploaded, or distributed. 6 of 6

https://datahub.berkeley.edu/hub/user-redirect/git-pull?repo=https://github.com/Berkeley-CS170/cs170-sp25-coding
https://github.com/Berkeley-CS170/cs170-sp25-coding

	Study Group (1 point)
	Multiway Cut (10 points)
	Relaxing Integer Linear Programs (17 points)
	Chameleon Vectors (22 points)
	[Coding] TSP Usually-Fast Algorithm (8 points)

