
LECTURE 11

FIBONACI SEQUENCE
-

1
,
1
,

2
,

3
,
5
,
8
,
13
,
21
, 34 ... -

is defined by
Fn = Fn

+
+ Fuzz

(every number in requence is sum of previous two

RECURSIVE IMPLEMENTATION
-

-

Here is a recursive algorithm to compute the
nth Fibonacci number

↑ In : integer (

if n = 1 return1

if n = 2 return I

return F(n-1) + F(n-2) z

We will now calculate the

time complexity (a - k
. a - Howlong doet

it(
of algorithm

Define
T[n] = # of operations in the execution

of F(n)

We do not want to compute T(n) exactly
BECAUSE

1) It's too HARD

2) It depends on detaile of machine/
programming language ,

et.

We need notation for "corde approximations"

BIG QH-NTION
-

Definitions Given two non-negative functions
foIN-> IN and g :

N+ N

we say fo(g) iff

E) J a constant c ,
such that f(n)>. g(n)
H nEN

Intuitively, f is growing NO FASTER than g
-

EXAMPLES :
1) 4n

*
+ 93 +27n + 15 = 8 (n4)

RULE1: In BigOh ,

we can drop all

multiplicative constants

RULE2 : Among polynomials n
,

n"
,
n?

ignore all but the highest degree term.

2) 100 = 0(2 :)
RULES : All polynomials (of fixed degree

are O (exponential

3) Clogn(20 = O(n)

RULE 4 : All logarithms & fired degree polys
inlogarithms are OCany polynomial

RUNTIME ANALYSIS FOR: RECURSIVE FIBONACCI
-

- - -

Define T(n) = # of operations in recursive
Fibonacci on input n

To gain intuition
,
let us look at the function

calls in F(5]

- (5)

F(q) F(3)

F(3) F(z) F(2) F(i)

F(2) F(c)

Execution of F(n)

C Compute F(n-1) -> T(n-1] operation

Compute F(n2) -> T(n-2] operations

Add the results

& return
↑

Total # of operation
TIT E T(n - 1) + T(n-2) + /Addition

= T(n) T(n-1) + (n - 2)

The runtime T() is really large , in fact
growe exponentially in n

To see this we will show

Claim : T(n) - ((())
IProof : By induction

,
we will show T(n >>

for n = 1
,
2, TC12

,
T(2] are <, A

S

< (1)
, %(2)

< (2)5(7)(32
TimS > T(n - 1 + Tin - 2]

> (3/2)"
-

+ 44(3/)n
- 2

(By induction hypothesis]

(3) /(3) +]
>* (3) (3) = %(3)"

Recursive Fibonacci is very inefficient : became

it computes the same quantities, again
again & again.

- (5)For example
F(q) F(3)

F(3) is computed twice.

F(3) F(z) F(2) F(i)

F(2) F(c)

To improve the algorithm , we
store& reuse

the values

ITERATIVE FIBONACCI
-

FIB(n : integer (

[1 % -n) : an array of n integers

f(1) = 1

f(2) = I

for i = 3 to n

f(i) = f(i -1 + f(i - 2)

ADDITION

RUNTIME ANALYSIS FOR : ITERATIVE FIBONACCI
-

↑ (n) = O(n*(timeforoneT
Suppose we use a fixed size integer (it)
to store f(u) then each addition is

one machine instruction- > Laddition = Poperation

and T(n) = O(n)

However can we really use a 64 bit integer
to store f(n) ??

How many
bits long is uth Fibonacci
M

number In ?

Any number X has /logX) bite long

Fact : 2 > En > (3
-

FREMARK : Can be proved by induction , just like]
ClaimI

=> n > logFn >, nlog(157 = 0 .58) n

=> En is between (0 .58)n to bits long

For example, Floo 580 bits long.

So we can't use 64 bit integere to store

Fr·

We need Bia INTEGER data type,
i

. e. Store flu) as a sequence of bits/digite
in an array

BIG INLEGER
-

Integer etored as a requence of digits

in an array.

