

FIBONACCI SEQUENCE 1, 1, 2, 3, 5, 8, 13, 21, 34 . . . is defined by $F_n = F_{n-1} + F_{n-2}$ (every number in sequence is sum of previous two)

RECURSIVE IMPLEMENTATION Here is a recursive algorithm to compute the nth Fibonacci number

$$= (n \circ integer)$$

if $n = 1$ return 1
if $n = 2$ return 1
return $F(n-1) + F(n-2)$ 3

Define
$$T[n] = \# of operations in the execution of F(n)$$

BIG QH-NOTATION
Definition: Given two non-negative functions

$$f: IN \rightarrow IN$$
 and $g: IN \rightarrow IN$
we say $f = O(g)$ iff
 $(=) \exists a constant c, such that $f(n) \leq c \cdot g(n)$
 $\forall n \in IN$
Intuitively, f is growing NO FASTER than $g$$

EXAMPLES: 1) $4n^{4} + 9n^{2} + 27n^{2} + 15 = (n^{4})$ RULE 1: In BigOh, we can drop all multiplicative constants RULE 2: Among polynomials n, n°, n3. ignore all but the highest degree term.

3)
$$(\log n)^{20} = O(n)$$

RUNTIME ANALYSIS FOR: RECURSIVE FIBONACCI Define T[n] = # of operations in recursive Fibonacei on input n To gain intuition, let as look at the function calls in F[3] F(S

Execution of F(n)T[n-1] operations \rightarrow Compute F(n-1) Compute F(n-2) Add the results & return

Total # of operations $T(n) \equiv T(n-1) + T(n-2) + (Addition)$ (reforming)

 \Rightarrow T(n)>, T(n-1)+T(n-2)

The runtime T(n) is really large, infact grouss exponentially in n

To see this we will show $Claim 1: T(n] > \Omega\left(\binom{3}{2}^{n}\right)$ Proof: By induction, we will show $T(n] > [\frac{1}{4}] (\frac{3}{2})^n$ for n = 1, 2, T(13, T(2)) are 7, 1

 $T(i) = \frac{1}{4} \begin{pmatrix} 3 \\ \overline{2} \end{pmatrix} \qquad T(2) = \frac{1}{4} \begin{pmatrix} 3 \\ \overline{2} \end{pmatrix}^{2}$ T[n] > T[n-1] + T[n-2] 7_{1} $\frac{1}{4} \left(\frac{3}{2} \right)^{n-1} + \frac{1}{4} \left(\frac{3}{2} \right)^{n-2}$ (By induction hypothenins) $7 \frac{1}{4} \binom{3}{2}^{n-2} \binom{3}{2} + 1$ $7 \begin{pmatrix} 3 \\ 4 \end{pmatrix}^{n-2} \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix}^2 \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix}^2 = 4 \begin{pmatrix} 3 \\ 2 \end{pmatrix}^n$

Reconsine Fibonacci is very inefficient : because it computer the same quantities, again & again Ragain. For example (F(4)) F(3) F(3) is computed twice. f(2) F(2) F(2) F(1) lo improve the algorithm, we store l'reuse the values

I TERATIVE FIBONACCI FIB(n= integer) F[1...n] = an array of n integers f[1]=1 f(2) = 1for i=3 to n f(i) = f(i-i) + f(i-2)ADDITION

RUNTIME ANALYSIS FOR: I TERATIVE FIBONACCI

$$T[n] = O\left(n * (time for one) \\ addition)\right)$$

Suppose we use a fixed size integer (64 bit)
to store $f(n)$ then each addition is
one machine instruction => Laddition = loperation
and $T[n] = O(n)$
However can we really use a 64 bit integer
to store $f(n)$??

How many bits long is nth Fibonacci number Fn?

Any number X has [log X] bits long

Fact: $2^{n} > F_{n} > \binom{3}{2}^{n}$

[REMARK: Can be proved by induction, just like] Claim]

 \Rightarrow n $2\log F_n 2$, n $\log (1.5) = (0.58) n$

BIG INTEGER . Integer stored as a sequence of digits in an array.