

FIBONACCI SEQUENCE 1, 1, 2, 3, 5, 8, 13, 21, 34... is defined by $F_n = F_{n-1} + F_{n-2}$ (every number in sequence is sum of previous two)

We will now calculate the time complexity (^a - ^k . ^a - Howlong doet it(of algorithm

Define T[n] ⁼ # of operations in the execution of F(n) We do not want to compute T(n) exactly BECAUSE 1) It's too HARD 2) It depends on detaile of machine/ programming language , et. We need notation for "corde approximations"

Bia QH-Maration
\nDefinition: Given two non-negative functions
\n
$$
f: M \rightarrow M
$$
 and g: $N \rightarrow N$
\nwe say $f = O(g)$ iff
\n $\Leftrightarrow \exists a constant c, such that $f(n) \leq c \cdot g(n)$
\n $\Leftrightarrow \exists a constant c, such that $f(n) \leq c \cdot g(n)$
\n $\Leftrightarrow \forall n \in N$
\nIntuitively, f is grouping No faster than g$$

EXAMPLES: 1) 4n $4₁$ $+ 90^{3} + 270^{2} + 15 =$ $O(\cap^4)$ RULE1: In BigOh , we can drop all multiplicative constants RULE 2: Among polynomials n, n°, n3 ignore all but the highest degree term.

2)
$$
n^{\text{loop}} = O(2^n)
$$

RouE3: All polynomials (of fixed degree)
are O (exponential)

$$
3) \left(\log n \right)^{20} = O(n)
$$

RULE ⁴ : All logarithms & fired degree polys inlogarithms are OCany polynomial

Execution of F(n) x cution of $F(n)$
 G Compute $F(n-1)$ ->
 G ompute $F(n-2)$ -> > T(n-1] operation \longrightarrow T[n-2] operations Add the results & return

Total # of operations $T(n) = T(n-$ 1) + T(n-2) + /
retorning

 $\Rightarrow T(n) \geqslant T(n-1) + T(n-1)$ 2)

 ϵ

The runtime $T(n)$ is really large, in fact growe exponentially in ⁿ

To see this we will show C laim 1 : $T(n) > 1$ $\left(\frac{3}{2}\right)^{n}$ To
Clai Proof : By induction , $\binom{(3/2)^{n}}{2}$
we will show $T(n] > \left(\frac{1}{4}\right) \left(\frac{3}{2}\right)^{n}$ $for n=1,2$ $\frac{d}{2}$ T(1), I(2) are 7, 1

 $T(1)$ $\frac{1}{4}$ $\frac{3}{2}$ $\frac{7}{2}$ $\frac{2}{4}$ $\frac{1}{4}$ $\frac{3}{2}$ $\frac{2}{2}$ $T[n] > T[n-1] + T[n-2]$ $\frac{1}{4}$ $\left(\frac{3}{2}\right)^{n-1}$ $\overline{+}$ $\frac{1}{4}\left(\frac{3}{2}\right)^{n-2}$ (By induction hypothesis] $\frac{1}{4}$ $\left(\frac{3}{2}\right)^{n-2}$ $\left(\frac{3}{2}\right)^{n}$ **)** $>1/4$ (3/2) $^{1-2}$ (3/2) = $\frac{1}{4}$ $\frac{3}{2}$

Kecursive Fibonacci is very inefficient: became it computes the same quantities, again $\&$ again l again. -
千 For example $(F(a))$ $(F(s))$ F(3) is computed twice. F(3) F(z) F(2) F(i) $F(q)$ (Fa) (Fa)
To improve the algorithm, we store & reuse the values

I TERATIVE FIBONACCI FIB(n = integer F[logn]= an arroy of n integers $f[i] = 1$ $f(z) = 1$ $for i=3 to n$ $f(i) = f[i-1] + f[i-2]$ ADDITION

RowIME Analysis Fok: I teRATIVE FilsondCCI
\n
$$
T[n] = O(n * (time for one\naddition))
$$
\n
$$
Suppose we use a fixed size integer (64 bit)
$$
\n
$$
to show e f(n) then each addition is
$$
\n
$$
one machine instruction \Rightarrow Iaddition = Ingeration
$$
\n
$$
and \quad T(n) = O(n)
$$
\n
$$
However can use really use a 64 bit integer
$$
\n
$$
to show f(n) ? ?
$$

How many bits long is nth Fibonacci

Any nomber X has $\lceil log_{2}x \rceil$ bits long

 $Fact: 2^{n} > F_{n} > (3/2)^{n}$

[REMARK: Can be proved by induction, just litte]

 $\Rightarrow n$ > $logF_{n}$ > n log(1.5) = (0.58) n

\n
$$
=
$$
 \n F_{n} is between (0.58) n to n bits long.\n

\n\nFor example, F_{1000} \n 580 bits long.\n

\n\nSo we can't use G4 bit integers to store the need. \n F_{n} .\n

\n\nWe need. \n B is integer, \n b is integer, \n b is integer.\n

\n\n $I.e.$ \n S to the $f(n)$ as a sequence of b is different.\n

\n\n $I.e.$ \n S to an away.\n

BIG INTEGER · Integer stored as a sequence of digits in an array.