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Explore (verten v) DFS(Graph G)
visited (v) = TRUE visited [u]= FALSE HuEY

pre[v) = clock clock = 0

clock = clock + 1 int array pre[n] post(n]
for each edge (v ,w)EE
if Not visited (w) for vEV/

EXPLORE (W) if NOT visited [v]
post(v) = clock EXPLORE (v)

&

clock = clock + 1
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[E = CROSS EDGE

] = IMPOSSIBLE

Observation : For all edges a-1
-

post[u) < post[v] if and only if
n- y is a back edge



DIRECTED ACYCLICD GRAPHS
-

"Directed graphs with NO directed cycles"

Application :

1) Modelling Dependencies/Pre-requisites
quisites

Example1 : Course prerequisites

Example 2: Source files for

Compilation



EXAMPLES GIA o
-

SOURCE NODE :
61B 170 172

No incoming edges ↳
SINk Node :

6IC 270

No Outgoing edges

FACT : Every DAG has at least ONE SOURCE

And at leat ONE SINK .

[Encercise : Convince yourself by proof)



OPOLOGICAL SORT [LINEARIZATION]
-

INPUT : A directed acyclic graph G = (X
,E)

output : An ordering of vertices so ALL edges

go from LEFT to RIGHT

Ca .k .a . "LINEARIZE"the DAG]
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OPOLOGICAL SORT
-

INPUT : A directed acyclic graph G = (X
,E)

output : An ordering of vertices so ALL edges

go from LEFT to RIGHT

ALGORITHM :

1) Run DFS to compute Pre & Post values

2) Sort vertices in decreasing postvalves



PROOF OF CORRECTNESS :

1) By Observation earlier

postfu) <postfu) if and only if a -> Y
is a back edge
-

2) DAG has NO back edges

=> Hedges u+ ↓ postfu) < post[v]

=> All edges are from LEFT to RIGHT when

vertices are ordered in decreasing post values



CONNECTIVITY IN DIRECTED GRAPHS
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FACT :
-

Every DIRECTED GRAPH can be DECOMPOSED

as a DAG of StronglyConnected
Components (SCC).



DECOMPOSING DIRECTED GRAPHS

Input : Directed Graph G= (V ,E)
Gott : Decompose G into DAG of SCCs.

&

A ↑

o If



INTUITION :
-

IDEA ·
-

Run explore (v) for
&

SoME verten v in 1somE Sink SCC ↓

2) REMOVE SINk SCC

& REPEAT

Or If
PROBLEM :
How do we find a
verten in a Sink SCC ?



FACT : In a DFS traversal ,
-

verten with highestPost value is in

a SOURCE SCC
.

BUT WE WANT :

A Node In Sink SCC ??

TEA : ) RUN DFS on GREG with edges
reversed.

2) Output verten v with MigHEST POST VALUE

YESOURCESCL in GR = Sank SCC in G ! L



KOSARAJU'S ALORITHM
-

Input : Directed Graph G= (V,E)
output : Decompose G into DAG of SCCe-

1) Gr # G with edges reversed ,

) prem(v) , poetp(n] for
all reVDFS (Gr)

&

3) DFS on G exploring in decreasing post order
9 visited [v] = FALSE HvEY

6) count = 0
, num[l .. n] :

int array.

6) for vertices v in decreasing posts order

of NOT visited [v]

explore (11)
cont = count + 1



Explore (v) =
visited[v) = TRUE
num[v] = count

for each edge New do

if NOT visited (w] explore(w)



BREADTH-FIRSTC (BE
- -

INPUT : Graph G= (v,E) , sell

Output : yEV diet(v] = distance from to y

diet[v] = o HvEV

dist(s) = 0

Q - queue with Gg3

while &NOT EMPTY

v = eject (f)
for all edges X-w

if (dist[w] = e)
.

dist[w] = dist(v) +. n

Q-add (n)
I
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