
LECTURE 6

DFS in DIRECTED GRAPHS [1
,
103

-

tree
52
,7)

B A C --- C
[8
,
9)

ac -
D

[3 , 63 B
D E : forward

cross
[4
,
5)
E ----

Explore (verten v) DFS(Graph G)
visited (v) = TRUE visited [u]= FALSE HuEY

pre[v) = clock clock = 0

clock = clock + 1 int array pre[n] post(n]
for each edge (v ,w)EE
if Not visited (w) for vEV/

EXPLORE (W) if NOT visited [v]
post(v) = clock EXPLORE (v)

&

clock = clock + 1

PRE POST NUMBERS -

B

PreCA] PreCB] Poet(B] PreC) PreCDS Poetly) Pretto Pos[A]

&] [[335
TIME

Edge : u-

[[2.] = Tree Or Forward Edge
W Y W

Ih Back Edge

& E IMPOSSIBLE

[E = CROSS EDGE

] = IMPOSSIBLE

Observation : For all edges a-1
-

post[u) < post[v] if and only if
n- y is a back edge

DIRECTED ACYCLICD GRAPHS
-

"Directed graphs with NO directed cycles"

Application :

1) Modelling Dependencies/Pre-requisites
quisites

Example1 : Course prerequisites

Example 2: Source files for

Compilation

EXAMPLES GIA o
-

SOURCE NODE :
61B 170 172

No incoming edges ↳
SINk Node :

6IC 270

No Outgoing edges

FACT : Every DAG has at least ONE SOURCE

And at leat ONE SINK .

[Encercise : Convince yourself by proof)

OPOLOGICAL SORT [LINEARIZATION]
-

INPUT : A directed acyclic graph G = (X
,E)

output : An ordering of vertices so ALL edges

go from LEFT to RIGHT

Ca .k .a . "LINEARIZE"the DAG]

A B
C

BA D 2 E

D E

-
B DC E A

OPOLOGICAL SORT
-

INPUT : A directed acyclic graph G = (X
,E)

output : An ordering of vertices so ALL edges

go from LEFT to RIGHT

ALGORITHM :

1) Run DFS to compute Pre & Post values

2) Sort vertices in decreasing postvalves

PROOF OF CORRECTNESS :

1) By Observation earlier

postfu) <postfu) if and only if a -> Y
is a back edge
-

2) DAG has NO back edges

=> Hedges u+ ↓ postfu) < post[v]

=> All edges are from LEFT to RIGHT when

vertices are ordered in decreasing post values

CONNECTIVITY IN DIRECTED GRAPHS
&

-

DIRECTED

DEFINITION: GRAPH

U iS STRONGLY-CONNECTED to X ·D
-

AND

O# Ja patha my
e-

VI

&

= a path - Ch

--AMEREDBI

AE NOB
,
D

A
BA C X

f (
-

D E
E Y Eiz

& ~

↓A
E
Y

D-

FACT :
-

Every DIRECTED GRAPH can be DECOMPOSED

as a DAG of StronglyConnected
Components (SCC).

DECOMPOSING DIRECTED GRAPHS

Input : Directed Graph G= (V ,E)
Gott : Decompose G into DAG of SCCs.

&

A ↑

o If

INTUITION :
-

IDEA ·
-

Run explore (v) for
&

SoME verten v in 1somE Sink SCC ↓

2) REMOVE SINk SCC

& REPEAT

Or If
PROBLEM :
How do we find a
verten in a Sink SCC ?

FACT : In a DFS traversal ,
-

verten with highestPost value is in

a SOURCE SCC
.

BUT WE WANT :

A Node In Sink SCC ??

TEA :) RUN DFS on GREG with edges
reversed.

2) Output verten v with MigHEST POST VALUE

YESOURCESCL in GR = Sank SCC in G ! L

KOSARAJU'S ALORITHM
-

Input : Directed Graph G= (V,E)
output : Decompose G into DAG of SCCe-

1) Gr # G with edges reversed ,

) prem(v) , poetp(n] for
all reVDFS (Gr)

&

3) DFS on G exploring in decreasing post order
9 visited [v] = FALSE HvEY

6) count = 0
, num[l .. n] :

int array.

6) for vertices v in decreasing posts order

of NOT visited [v]

explore (11)
cont = count + 1

Explore (v) =
visited[v) = TRUE
num[v] = count

for each edge New do

if NOT visited (w] explore(w)

BREADTH-FIRSTC (BE
- -

INPUT : Graph G= (v,E) , sell

Output : yEV diet(v] = distance from to y

diet[v] = o HvEV

dist(s) = 0

Q - queue with Gg3

while &NOT EMPTY

v = eject (f)
for all edges X-w

if (dist[w] = e)
.

dist[w] = dist(v) +. n

Q-add (n)
I

A C-E

S -
D- F

QUErE des A B C DE F

[s] O t Gay
S

[A
,
C
,
D) ⑨ I to 1000

O 10 I I A 5

(C
,
D]

[D
,E) 0 1 0 1 1 2 -

[E ,F] OI u 11 22

[F , B]
OI 31122

[F)

[B)

