DFS FOR STRONGLY C.C.
DIJKSTRA’S ALGORITHM
DFS

visited = boolean array indexed by V initialized to F

```python
def explore(v):
    visited[v] = T
    for each neighbor w of v:
        if not visited[w]:
            explore(w)
```

```python
def DFS:
    for each v in V:
        if not visited[v]:
            explore(v)
```
LINEARIZATION USING DFS

visited = boolean array indexed by V initialized to F
L = empty list

def explore (v)
 visited [v] = T
 for each neighbor w of v:
 if not visited [w]:
 explore (w)
 L = [v] + L

def linearize
 for each v in V
 if not visited [v]: explore (v)
CONNECTED COMPONENTS USING DFS

visited = boolean array indexed by V initialized to F
ca = integer array indexed by V initialized to 0

def explore (v, c)
 visited [v] = T; ca [v] = c
 for each neighbor w of v:
 if not visited [w]:
 explore (w, c)

def cc
 c = 0
 for each v in V
 if not visited [v]:
 c++
 explore (v, c)
STRONGLY CONNECTED COMPONENTS USING DFS

\(G^R = G \) with all edges reversed

\(L = \) output of linearization algorithm on \(G^R \)

Run \(CC \) algorithm on \(G \), enumerating vertices as in \(L \)
Let S, T be s.c.c. of G with > 1 edges from S to T

Then first vertex of S in L comes before the first vertex of T
Let S,T be s.c.c. of G^r with >1 edges from S to T.
Then first vertex of S in L comes before the first vertex of T.

\[V \mid w \mid \rightarrow Z \rightarrow 1 \]

\[L \quad G^r \]

\[T \quad G \]

\[Z \rightarrow V \rightarrow S \rightarrow G \]
Shortest path

\[Q = 1 \ldots d \]

\[\text{dist} \begin{bmatrix} 0 & 1 & 3 & 2 & 4 \\ s & a & b & c & d \end{bmatrix} \]

\[v = 5 \]

\[\text{prec} = \text{array indexed by vertices initialized to NIL} \]
\[\text{dist} = \text{array indexed by vertices initialized to } \infty \]
\[Q = \text{priority queue of vertices indexed by dist[·]} \]
\[\text{dist}[s] = 0 \]

For each \(v \) \(Q \).insert(\(v \))

while \(Q \) is not empty

\[v = Q \).deletemin(\) \]

for each \(w \) neighbor of \(v \):

if \(\text{dist}[w] > \text{dist}[v] + \ell(v, w) \):

\[\text{dist}[w] = \text{dist}[v] + \ell(v, w) \]

\[Q \).decreasekey(\(w \)) \]

\[\text{prec}[w] = v \]
At the end of each iteration, the value of \(\text{dist}[v] \) is equal to the length of the shortest path from \(s \) to \(v \) that uses only nodes outside \(Q \) as intermediate steps, and it is correct \(s \rightarrow v \) distance if \(v \) is outside \(Q \).

- **First iteration**

 \[
 \begin{align*}
 d[s] &= 0 \\
 d[v] &= d(s,v) \text{ if } v \text{ neighbor of } s \\
 d[v] &= \infty \text{ for others} \\
 Q \text{ contains all vertices except } s
 \end{align*}
 \]

- **Suppose this is true after \(t \) iterations**

 - Consider iteration \(t+1 \)

 - V removed from \(Q \) at time \(t+1 \)

 - \(v \) not in \(Q \) at time \(t \)

 - in \(Q \) at time \(t \)